The shaky foundations of large language models and foundation models for electronic health records

被引:50
|
作者
Wornow, Michael [1 ]
Xu, Yizhe [2 ]
Thapa, Rahul [2 ]
Patel, Birju [2 ]
Steinberg, Ethan [1 ]
Fleming, Scott [2 ]
Pfeffer, Michael A. [2 ,3 ]
Fries, Jason [2 ]
Shah, Nigam H. [2 ,3 ,4 ,5 ]
机构
[1] Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA
[2] Stanford Univ, Ctr Biomed Informat Res, Sch Med, Stanford, CA USA
[3] Stanford Hlth Care, Technol & Digital Serv, Palo Alto, CA USA
[4] Stanford Univ, Dept Med, Sch Med, Stanford, CA USA
[5] Stanford Univ, Clin Excellence Res Ctr, Sch Med, Stanford, CA USA
关键词
BIAS;
D O I
10.1038/s41746-023-00879-8
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
The success of foundation models such as ChatGPT and AlphaFold has spurred significant interest in building similar models for electronic medical records (EMRs) to improve patient care and hospital operations. However, recent hype has obscured critical gaps in our understanding of these models' capabilities. In this narrative review, we examine 84 foundation models trained on non-imaging EMR data (i.e., clinical text and/or structured data) and create a taxonomy delineating their architectures, training data, and potential use cases. We find that most models are trained on small, narrowly-scoped clinical datasets (e.g., MIMIC-III) or broad, public biomedical corpora (e.g., PubMed) and are evaluated on tasks that do not provide meaningful insights on their usefulness to health systems. Considering these findings, we propose an improved evaluation framework for measuring the benefits of clinical foundation models that is more closely grounded to metrics that matter in healthcare.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] The shaky foundations of large language models and foundation models for electronic health records
    Michael Wornow
    Yizhe Xu
    Rahul Thapa
    Birju Patel
    Ethan Steinberg
    Scott Fleming
    Michael A. Pfeffer
    Jason Fries
    Nigam H. Shah
    [J]. npj Digital Medicine, 6
  • [2] Large language models to identify social determinants of health in electronic health records
    Guevara, Marco
    Chen, Shan
    Thomas, Spencer
    Chaunzwa, Tafadzwa L.
    Franco, Idalid
    Kann, Benjamin H.
    Moningi, Shalini
    Qian, Jack M.
    Goldstein, Madeleine
    Harper, Susan
    Aerts, Hugo J. W. L.
    Catalano, Paul J.
    Savova, Guergana K.
    Mak, Raymond H.
    Bitterman, Danielle S.
    [J]. NPJ DIGITAL MEDICINE, 2024, 7 (01)
  • [3] Large language models to identify social determinants of health in electronic health records
    Marco Guevara
    Shan Chen
    Spencer Thomas
    Tafadzwa L. Chaunzwa
    Idalid Franco
    Benjamin H. Kann
    Shalini Moningi
    Jack M. Qian
    Madeleine Goldstein
    Susan Harper
    Hugo J. W. L. Aerts
    Paul J. Catalano
    Guergana K. Savova
    Raymond H. Mak
    Danielle S. Bitterman
    [J]. npj Digital Medicine, 7
  • [4] Harnessing the Power of Large Language Models (LLMs) for Electronic Health Records (EHRs) Optimization
    Nashwan, Abdulqadir J.
    Abujaber, Ahmad A.
    [J]. CUREUS JOURNAL OF MEDICAL SCIENCE, 2023, 15 (07)
  • [5] Enhancing Large Language Models with Human Expertise for Disease Detection in Electronic Health Records
    Pan, Jie
    Lee, Seungwon
    Cheligeer, Cheligeer
    Martin, Elliot A.
    Riazi, Kiarash
    Quan, Hude
    Li, Na
    [J]. 2024 IEEE INTERNATIONAL CONFERENCE ON DIGITAL HEALTH, ICDH 2024, 2024, : 129 - 131
  • [6] Foundation Models, Generative AI, and Large Language Models
    Ross, Angela
    McGrow, Kathleen
    Zhi, Degui
    Rasmy, Laila
    [J]. CIN-COMPUTERS INFORMATICS NURSING, 2024, 42 (05) : 377 - 387
  • [7] Evolution and Prospects of Foundation Models: From Large Language Models to Large Multimodal Models
    Chen, Zheyi
    Xu, Liuchang
    Zheng, Hongting
    Chen, Luyao
    Tolba, Amr
    Zhao, Liang
    Yu, Keping
    Feng, Hailin
    [J]. CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 80 (02): : 1753 - 1808
  • [8] Large language models and multimodal foundation models for precision oncology
    Truhn, Daniel
    Eckardt, Jan-Niklas
    Ferber, Dyke
    Kather, Jakob Nikolas
    [J]. NPJ PRECISION ONCOLOGY, 2024, 8 (01)
  • [9] Large language models and multimodal foundation models for precision oncology
    Daniel Truhn
    Jan-Niklas Eckardt
    Dyke Ferber
    Jakob Nikolas Kather
    [J]. npj Precision Oncology, 8
  • [10] A large language model for electronic health records
    Xi Yang
    Aokun Chen
    Nima PourNejatian
    Hoo Chang Shin
    Kaleb E. Smith
    Christopher Parisien
    Colin Compas
    Cheryl Martin
    Anthony B. Costa
    Mona G. Flores
    Ying Zhang
    Tanja Magoc
    Christopher A. Harle
    Gloria Lipori
    Duane A. Mitchell
    William R. Hogan
    Elizabeth A. Shenkman
    Jiang Bian
    Yonghui Wu
    [J]. npj Digital Medicine, 5