Numerical Simulation of Viscous Shock Tube Flow with Shock-capturing and Hybrid High-resolution Schemes

被引:2
|
作者
Shershnev, Anton A. [1 ]
Kundu, Abhishek [3 ]
Kudryavtsev, Alexey N. [1 ,2 ]
Thangadurai, Murugan [4 ]
De, Sudipta [4 ]
机构
[1] SB RAS, Khristianovich Inst Theoret & Appl Mech, Inst Skaya 4-1, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Pirogova 1, Novosibirsk 630090, Russia
[3] Inst Engn & Management, Kolkata, India
[4] Cent Mech Engn Res Inst, Durgapur, India
基金
俄罗斯基础研究基金会;
关键词
PSEUDO-SHOCK; DUCT;
D O I
10.1063/1.5117417
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The viscous shock tube problem is studied using two different solvers, 5th order WENO solver and a 13th order hybrid scheme. The possibility to reach a grid-convergent solution for the Reynolds number Re = 2500 is investigated and an analysis of shock wave / boundary layer interaction details and flow dynamics inside the viscous shock tube is presented. Specific features and accuracy of the used solvers are discussed.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] On the Accuracy of Shock-Capturing Schemes Calculating Gas-Dynamic Shock Waves
    V. A. Kolotilov
    A. A. Kurganov
    V. V. Ostapenko
    N. A. Khandeeva
    S. Chu
    [J]. Computational Mathematics and Mathematical Physics, 2023, 63 : 1341 - 1349
  • [42] On the Accuracy of Shock-Capturing Schemes Calculating Gas-Dynamic Shock Waves
    Kolotilov, V. A.
    Kurganov, A. A.
    Ostapenko, V. V.
    Khandeeva, N. A.
    Chu, S.
    [J]. COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2023, 63 (07) : 1341 - 1349
  • [43] On Construction of Combined Shock-Capturing Finite-Difference Schemes of High Accuracy
    Ostapenko, Vladimir
    Kovyrkina, Olyana
    [J]. NUMERICAL ANALYSIS AND ITS APPLICATIONS (NAA 2016), 2017, 10187 : 525 - 532
  • [44] High-Order Bicompact Schemes for Shock-Capturing Computations of Detonation Waves
    M. D. Bragin
    B. V. Rogov
    [J]. Computational Mathematics and Mathematical Physics, 2019, 59 : 1314 - 1323
  • [45] Part II High-Order Shock-Capturing Schemes for Balance Laws
    Russo, Giovanni
    [J]. NUMERICAL SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS, 2009, : 59 - +
  • [46] High-Order Bicompact Schemes for Shock-Capturing Computations of Detonation Waves
    Bragin, M. D.
    Rogov, B., V
    [J]. COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2019, 59 (08) : 1314 - 1323
  • [47] Numerical symmetry-preserving techniques for low-dissipation shock-capturing schemes
    Fleischmann, Nico
    Adami, Stefan
    Adams, Nikolaus A.
    [J]. COMPUTERS & FLUIDS, 2019, 189 : 94 - 107
  • [48] Numerical simulation of the viscous shock tube problem by using a high resolution monotonicity-preserving scheme
    Daru, Virginie
    Tenaud, Christian
    [J]. COMPUTERS & FLUIDS, 2009, 38 (03) : 664 - 676
  • [49] Analysis of mild ignition in a shock tube using a highly resolved 3D-LES and high-order shock-capturing schemes
    J. T. Lipkowicz
    I. Wlokas
    A. M. Kempf
    [J]. Shock Waves, 2019, 29 : 511 - 521
  • [50] A new shock-capturing numerical scheme for ideal hydrodynamics
    Feckova, Z.
    Tomasik, B.
    [J]. HOT QUARKS 2014: WORKSHOP FOR YOUNG SCIENTISTS ON THE PHYSICS OF ULTRARELATIVISTIC NUCLEUS-NUCLEUS COLLISIONS, 2015, 612