Forest biomass estimation over regional scales using multisource data

被引:134
|
作者
Baccini, A
Friedl, MA
Woodcock, CE
Warbington, R
机构
[1] Boston Univ, Dept Geog, Boston, MA 02215 USA
[2] US Forest Serv, Remote Sensing Lab, USDA, Sacramento, CA 95814 USA
关键词
D O I
10.1029/2004GL019782
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
A combination of statistical models and multisource data were used to map above-ground forest biomass for National Forest lands in California. To do this, data from the Moderate Resolution Imaging Spectoradiometer were used in combination with precipitation, temperature, and elevation data. The results show that coarse resolution remotely sensed data in combination with relevant topographic and climate data can be used to map aboveground biomass with good accuracy over large areas. For the data sets considered, empirical models based on a 2 percent sample explained 73 percent of the variance in biomass in the remaining 98 percent of the data with a root mean square error of 44.4 tons/ha. These results suggest that it should be feasible to improve estimates of above-ground carbon stocks at regional to continental scales in the near future.
引用
收藏
页码:L105011 / 4
页数:4
相关论文
共 50 条
  • [41] Exploring Bamboo Forest Aboveground Biomass Estimation Using Sentinel-2 Data
    Chen, Yuyun
    Li, Longwei
    Lu, Dengsheng
    Li, Dengqiu
    [J]. REMOTE SENSING, 2019, 11 (01)
  • [42] Estimation of forest biomass from light detection and ranging data by using machine learning
    Torre-Tojal, Leyre
    Manuel Lopez-Guede, Jose
    Grana Romay, Manuel M.
    [J]. EXPERT SYSTEMS, 2019, 36 (04)
  • [43] Forest biomass estimation from airborne LiDAR data using machine learning approaches
    Gleason, Colin J.
    Im, Jungho
    [J]. REMOTE SENSING OF ENVIRONMENT, 2012, 125 : 80 - 91
  • [44] Estimation of biomass in wheat using random forest regression algorithm and remote sensing data
    Wang, Li'ai
    Zhou, Xudong
    Zhu, Xinkai
    Dong, Zhaodi
    Guo, Wenshan
    [J]. CROP JOURNAL, 2016, 4 (03): : 212 - 219
  • [45] A Method for Bus OD Matrix Estimation Using Multisource Data
    Huang, Di
    Yu, Jun
    Shen, Shiyu
    Li, Zhekang
    Zhao, Luyun
    Gong, Cheng
    [J]. JOURNAL OF ADVANCED TRANSPORTATION, 2020, 2020
  • [46] Spatial and topographic trends in forest expansion and biomass change, from regional to local scales
    Buma, Brian
    Barrett, Tara M.
    [J]. GLOBAL CHANGE BIOLOGY, 2015, 21 (09) : 3445 - 3454
  • [47] Forest aboveground biomass mapping and estimation across multiple spatial scales using model-based inference
    Chen, Qi
    McRoberts, Ronald E.
    Wang, Changwei
    Radtke, Philip J.
    [J]. REMOTE SENSING OF ENVIRONMENT, 2016, 184 : 350 - 360
  • [48] A BIOMASS ESTIMATE OVER THE HARVARD FOREST USING FIELD MEASUREMENTS WITH RADAR AND LIDAR DATA
    Ahmed, Razi
    Siqueira, Paul
    Bergen, Kathleen
    Chapman, Bruce
    Hensley, Scott
    [J]. 2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 4768 - 4771
  • [49] ESTIMATING REGIONAL ABOVEGROUND FOREST BIOMASS USING HJ-1 SATELLITE DATA AND ICESAT
    Chi, Hong
    Guo, Zhifeng
    Sun, Guoqing
    [J]. 2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 2672 - 2675
  • [50] Estimation of forest above-ground biomass using multi-parameter remote sensing data over a cold and arid area
    Tian, Xin
    Su, Zhongbo
    Chen, Erxue
    Li, Zengyuan
    van der Tol, Christiaan
    Guo, Jianping
    He, Qisheng
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2012, 14 (01): : 160 - 168