Two-mode Wigner operator in (eta vertical bar representation

被引:32
|
作者
Wu, HJ
Fan, HY
机构
[1] UNIV SCI & TECHNOL CHINA, DEPT MAT SCI, HEFEI 230026, ANHUI, PEOPLES R CHINA
[2] XIAMEN UNIV, DEPT PHYS, XIAMEN 361005, PEOPLES R CHINA
来源
MODERN PHYSICS LETTERS B | 1997年 / 11卷 / 13期
关键词
D O I
10.1142/S0217984997000670
中图分类号
O59 [应用物理学];
学科分类号
摘要
We derive the (eta\ representation of two-mode Wigner operator, where the (eta\ state is the common eigenstate of two particles' relative position and total momentum. By virtue of this representation we can conveniently obtain Wigner functions of some two-mode states and the Weyl correspondence functions of two-mode unitary phase operators.
引用
收藏
页码:549 / 554
页数:6
相关论文
共 50 条
  • [21] New approach for solving the Wigner function from the Husimi function in the two-mode entangled state representation
    Guo, Qin
    Yuan, Wen
    Fan, Hong-Yi
    OPTIK, 2014, 125 (18): : 5303 - 5308
  • [22] Two-mode squeezing operator in circuit QED
    Diniz, E. C.
    Rossatto, D. Z.
    Villas-Boas, C. J.
    QUANTUM INFORMATION PROCESSING, 2018, 17 (08)
  • [23] Wigner functions of two-mode excited squeezed vacuum states
    Meng, Xiangguo
    Wang, Jisuo
    Liang, Baolong
    Guangxue Xuebao/Acta Optica Sinica, 2007, 27 (09): : 1700 - 1705
  • [24] Two-mode phase operator and phase state studied in number-difference orthonormal representation
    Fan, HY
    Zou, W
    COMMUNICATIONS IN THEORETICAL PHYSICS, 1999, 32 (01) : 151 - 154
  • [25] A new representation for two-mode squeezed states
    Fan, HY
    Jiang, NQ
    Lu, HL
    OPTICS COMMUNICATIONS, 2004, 234 (1-6) : 277 - 279
  • [26] A Hermitian operator conjugate to two-mode number-difference operator
    Fan, HY
    Wang, YH
    CHINESE PHYSICS LETTERS, 1998, 15 (06): : 391 - 392
  • [27] Hermitian Operators Conjugate to Two-Mode Number-Difference Operator Studied in Entangled State Representation
    XU Xue-Fen School of Mathematics and Physics
    CommunicationsinTheoreticalPhysics, 2008, 50 (10) : 979 - 982
  • [28] Wigner Function of the Two-Mode Squeezing-Enhanced Vacuum State
    Ren, Gang
    Du, Jian-Ming
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2012, 51 (11) : 3452 - 3457
  • [29] Wigner Function of the Two-Mode Squeezing-Enhanced Vacuum State
    Gang Ren
    Jian-Ming Du
    International Journal of Theoretical Physics, 2012, 51 : 3452 - 3457
  • [30] The Squeezing Effect of Three-Mode Operator as an Extension from Two-Mode Squeezing Operator
    Xu, Xue-xiang
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2012, 51 (07) : 2056 - 2065