We describe the ergodic invariant Radon measures for the horocycle flow on general (infinite) regular covers of finite volume hyperbolic surfaces. The method is to establish a bijection between these measures and the positive minimal eigenfunctions of the Laplacian of the covering surface.
机构:
Univ Bourgogne, CNRS, Inst Math Bourgogne, UMR 5584, F-21004 Dijon, FranceUniv Bourgogne, CNRS, Inst Math Bourgogne, UMR 5584, F-21004 Dijon, France
Bonatti, Christian
Zhang, Jinhua
论文数: 0引用数: 0
h-index: 0
机构:
Univ Bourgogne, CNRS, Inst Math Bourgogne, UMR 5584, F-21004 Dijon, France
Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
Univ Paris Sud, CNRS, Lab Math Orsay, F-91405 Orsay, FranceUniv Bourgogne, CNRS, Inst Math Bourgogne, UMR 5584, F-21004 Dijon, France
机构:
Inst Matemat Pura & Aplicada IMPA, Estr Dona Castorina 110, BR-22460320 Rio De Janeiro, RJ, BrazilInst Matemat Pura & Aplicada IMPA, Estr Dona Castorina 110, BR-22460320 Rio De Janeiro, RJ, Brazil
Espitia, Claudia
Frid, Hermano
论文数: 0引用数: 0
h-index: 0
机构:
FFCLRPUSP, Dept Computat & Math DCM, Ave Bandeirantes,3900, BR-14040901 Ribeirao Preto, SP, BrazilInst Matemat Pura & Aplicada IMPA, Estr Dona Castorina 110, BR-22460320 Rio De Janeiro, RJ, Brazil
Frid, Hermano
Marroquin, Daniel
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio de Janeiro, Inst Matemat, Cidade Univ, BR-21945970 Brazi, RJ, BrazilInst Matemat Pura & Aplicada IMPA, Estr Dona Castorina 110, BR-22460320 Rio De Janeiro, RJ, Brazil