Bi-color atomic beam slower and magnetic field compensation for ultracold gases

被引:5
|
作者
Li, Jianing [1 ,2 ]
Lim, Kelvin [1 ,2 ]
Das, Swarup [1 ,2 ]
Zanon-Willette, Thomas [2 ,3 ,4 ]
Feng, Chen-Hao [5 ]
Robert, Paul [5 ]
Bertoldi, Andrea [5 ]
Bouyer, Philippe [5 ]
Kwong, Chang Chi [1 ,2 ]
Lan, Shau-Yu [1 ,2 ]
Wilkowski, David [1 ,2 ,3 ]
机构
[1] Nanyang Technol Univ, Sch Phys & Math Sci, Nanyang Quantum Hub, 21 Nanyang Link, Singapore 637371, Singapore
[2] Nanyang Technol Univ, Natl Univ Singapore, Univ Cote Azur, CNRS,Sorbonne Univ,MajuLab,Int Joint Res Unit IRL, Singapore, Singapore
[3] Natl Univ Singapore, Ctr Quantum Technol, Singapore 117543, Singapore
[4] Univ PSL, Sorbonne Univ, CNRS, Observ Paris,LERMA, F-75005 Paris, France
[5] Univ Bordeaux, Lab Photon Numer & Nanosci, IOGS, CNRS,UMR 5298,LP2N, F-33400 Talence, France
来源
AVS QUANTUM SCIENCE | 2022年 / 4卷 / 04期
基金
新加坡国家研究基金会;
关键词
CLOCK;
D O I
10.1116/5.0126745
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Transversely loaded bidimensional-magneto-optical-traps (2D-MOTs) have been recently developed as high flux sources for cold strontium atoms to realize a new generation of compact experimental setups. Here, we discuss on the implementation of a cross-polarized bi-color slower for a strontium atomic beam, improving the 2D-MOT loading and increasing the number of atoms up to similar to 10(9) atoms in the 461 nm MOT. Our slowing scheme addresses simultaneously two excited Zeeman substates of the Sr-88 S-1(0)-> P-1(1) transition at 461 nm. We also realized a three-axis active feedback control of the magnetic field down to the microgauss regime. Such a compensation is performed thanks to a network of eight magnetic field probes arranged in a cuboid configuration around the atomic cold sample and a pair of coils in a quasi-Helmholtz configuration along each of three Cartesian directions. Our active feedback is capable of efficiently suppressing most of the magnetically induced position fluctuations of the 689 nm intercombination-line MOT.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Creation of an effective magnetic field in ultracold atomic gases using electromagnetically induced transparency
    Juzeliunas, G
    Öhberg, P
    OPTICS AND SPECTROSCOPY, 2005, 99 (03) : 357 - 361
  • [2] Creation of an effective magnetic field in ultracold atomic gases using electromagnetically induced transparency
    G. Juzeliunas
    P. Öhberg
    Optics and Spectroscopy, 2005, 99 : 357 - 361
  • [3] Bi-color near infrared thermoreflectometry: A method for true temperature field measurement
    Sentenac, Thierry
    Gilblas, Remi
    Hernandez, Daniel
    Le Maoult, Yannick
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2012, 83 (12):
  • [4] Magnetic transport apparatus for the production of ultracold atomic gases in the vicinity of a dielectric surface
    Haendel, S.
    Marchant, A. L.
    Wiles, T. P.
    Hopkins, S. A.
    Cornish, S. L.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2012, 83 (01):
  • [5] Observation of electric field induced superradiance slowdown in ultracold Rydberg atomic gases
    He, Yunhui
    Bai, Jingxu
    Jiao, Yuechun
    Li, Weibin
    Zhao, Jianming
    OPTICS EXPRESS, 2024, 32 (24): : 43543 - 43552
  • [6] Ultracold atomic spin mixtures in ultrastable magnetic field environments
    Cominotti, Riccardo
    Rogora, Chiara
    Zenesini, Alessandro
    Lamporesi, Giacomo
    Ferrari, Gabriele
    EPL, 2024, 146 (04)
  • [7] Magnetic Field Manipulation Applied to Feshbach Resonances in Ultracold Quantum Gases
    Zhou, Tianwei
    Luan, Tian
    Li, Chen
    Li, Shizhe
    Chen, Xuzong
    XXIX INTERNATIONAL CONFERENCE ON PHOTONIC, ELECTRONIC, AND ATOMIC COLLISIONS (ICPEAC2015), PTS 1-12, 2015, 635
  • [8] Magnetic merging of ultracold atomic gases of 85Rb and 87Rb
    Haendel, S.
    Wiles, T. P.
    Marchant, A. L.
    Hopkins, S. A.
    Adams, C. S.
    Cornish, S. L.
    PHYSICAL REVIEW A, 2011, 83 (05):
  • [10] Density distributions of ultracold fermionic gases under a nonuniform gradient magnetic field
    Lv, Dong-Yan
    Kong, Xiang-Mu
    PHYSICAL REVIEW A, 2007, 76 (05):