BDE-154 INDUCES MITOCHONDRIAL PERMEABILITY TRANSITION AND IMPAIRS MITOCHONDRIAL BIOENERGETICS

被引:20
|
作者
Pereira, Lilian Cristina [1 ]
Cabral Miranda, Luiz Felippe [2 ]
de Souza, Alecsandra Oliveira [2 ]
Dorta, Daniel Junqueira [2 ]
机构
[1] Univ Sao Paulo, Fac Ciencias Farmaceut Ribeirao Preto, Dept Anal Clin Toxicol & Bromatol, Sao Paulo, Brazil
[2] Univ Sao Paulo, Dept Quim, Fac Filosofia Ciencias & Letras Ribeirao Preto, Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
POLYBROMINATED DIPHENYL ETHERS; BROMINATED FLAME RETARDANTS; RAT-LIVER MITOCHONDRIA; ELECTRON-TRANSPORT; MEMBRANE; APOPTOSIS; PBDES; CHAIN; PROBE; WATER;
D O I
10.1080/15287394.2014.861337
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Brominated flame retardants are used in various consumer goods to make these materials difficult to burn. Polybrominated diphenyl ethers (PBDE), which are representative of this class of retardants, consist of two benzene rings linked by an oxygen atom, and contain between 1 and 10 bromine atoms in their chemical structure, with the possibility of up to 209 different congeners. Among these congeners, BDE-154 (hexa-BDE) is persistent in the environment and easy to detect in the biota, but no apparent information regarding the mechanism underlying action and toxicity is available. Mitochondria, as the main energy-producing organelles, play an important role in the maintenance of various cellular functions. Therefore, mitochondria were used in the present study as an experimental model to determine the effects of BDE-154 congener at concentrations ranging from 0.1 M to 50 M. Our results demonstrated that BDE-154 interacts with the mitochondrial membrane, preferably by inserting into the hydrophobic core of the mitochondrial membrane, which partially inhibits respiration, dissipates , and permeabilizes the inner mitochondrial membrane to deplete ATP. These effects are more pronounced at concentrations equal to or higher than 10 M. Results also showed that BDE-154 did not induce reactive oxygen species (ROS) accumulation within the mitochondria, indicating the absence of oxidative stress. Therefore, BDE-154 impairs mitochondrial bioenergetics and permeabilizes the mitochondrial membrane, potentially leading to cell death but not via mechanisms involving oxidative stress.
引用
收藏
页码:24 / 36
页数:13
相关论文
共 50 条
  • [21] Mitochondrial permeability transition pore induces mitochondria injury in Huntington disease
    Rodrigo A Quintanilla
    Youngnam N Jin
    Rommy von Bernhardi
    Gail VW Johnson
    Molecular Neurodegeneration, 8
  • [22] Valinomycin induces permeability transition independent release of mitochondrial cytochrome C
    Shinohara, Y
    Almofti, MR
    Ishida, T
    Terada, H
    MOLECULAR BIOLOGY OF THE CELL, 2002, 13 : 128A - 128A
  • [23] Nitric oxide induces apoptosis via triggering mitochondrial permeability transition
    Hortelano, S
    Dallaporta, B
    Zamzami, N
    Hirsch, T
    Susin, SA
    Marzo, I
    Bosca, L
    Kroemer, G
    FEBS LETTERS, 1997, 410 (2-3) : 373 - 377
  • [24] The insecticide diazinon induces mitochondrial permeability transition in rat liver mitochondria
    Mingatto, Fabio Erminio
    Miranda, Camila Araujo
    de Jesus Santos Guimaraes, Anilda Rufino
    EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, 2019, 49 : 59 - 59
  • [25] Ammonia induces the mitochondrial permeability transition in primary cultures of rat astrocytes
    Bai, G
    Rao, KVR
    Murthy, CRK
    Panickar, KS
    Jayakumar, AR
    Norenberg, MD
    JOURNAL OF NEUROSCIENCE RESEARCH, 2001, 66 (05) : 981 - 991
  • [26] Doxorubicin induces mitochondrial permeability transition and contractile dysfunction in the human myocardium
    Montaigne, David
    Marechal, Xavier
    Preau, Sebastien
    Baccouch, Riadh
    Modine, Thomas
    Fayad, George
    Lancel, Steve
    Neviere, Remi
    MITOCHONDRION, 2011, 11 (01) : 22 - 26
  • [27] Mitochondrial permeability transition pore induces mitochondria injury in Huntington disease
    Quintanilla, Rodrigo A.
    Jin, Youngnam N.
    von Bernhardi, Rommy
    Johnson, Gail V. W.
    MOLECULAR NEURODEGENERATION, 2013, 8
  • [28] Perspectives on the mitochondrial permeability transition
    Bernardi, P
    Basso, E
    Colonna, R
    Costantini, P
    Di Lisa, F
    Eriksson, O
    Fontaine, E
    Forte, M
    Ichas, F
    Massari, S
    Nicolli, A
    Petronilli, V
    Scorrano, L
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 1998, 1365 (1-2): : 200 - 206
  • [29] Cardioprotection and the mitochondrial permeability transition
    Keith, R. J.
    Bhatnagar, A.
    MINERVA CARDIOANGIOLOGICA, 2010, 58 (02): : 241 - 251
  • [30] On the Nature of the Mitochondrial Permeability Transition
    Mannella, Carmen A.
    Boyman, Liron
    Coleman, Andrew
    Ward, Christopher W.
    Lederer, W. Jonathan
    BIOPHYSICAL JOURNAL, 2021, 120 (03) : 347A - 348A