Sampling and Reconstruction in Distinct Subspaces Using Oblique Projections

被引:4
|
作者
Berger, Peter [1 ]
Groechenig, Karlheinz [2 ]
Matz, Gerald [1 ]
机构
[1] TU Wien, Inst Telecommun, Gusshausstr 25-389, A-1040 Vienna, Austria
[2] Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
基金
奥地利科学基金会;
关键词
Sampling theory; Stable reconstruction; Frame theory; Oblique projections; Weighted least squares;
D O I
10.1007/s00041-018-9620-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study reconstruction operators on a Hilbert space that are exact on a given reconstruction subspace. Among those the reconstruction operator obtained by the least squares fit has the smallest operator norm, and therefore is most stable with respect to noisy measurements. We then construct the operator with the smallest possible quasi-optimality constant, which yields the most stable reconstruction with respect to a systematic error appearing before the sampling process (model uncertainty). We describe how to vary continuously between the two reconstruction methods, so that we can trade stability for quasi-optimality. As an application we study the reconstruction of a compactly supported function from nonuniform samples of its Fourier transform.
引用
收藏
页码:1080 / 1112
页数:33
相关论文
共 50 条
  • [21] Projections on Invariant Subspaces
    Ehm, Werner
    ALGEBRAIC METHODS IN STATISTICS AND PROBABILITY II, 2010, 516 : 179 - 188
  • [22] Oblique Projections
    Veselic, K.
    DAMPED OSCILLATIONS OF LINEAR SYSTEMS: A MATHEMATICAL INTRODUCTION, 2011, 2023 : 55 - 60
  • [23] Invariant subspaces for pairs of projections
    Allan, GR
    Zemánek, J
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1998, 57 : 449 - 468
  • [24] Weighted projections into closed subspaces
    Corach, G.
    Fongi, G.
    Maestripieri, A.
    STUDIA MATHEMATICA, 2013, 216 (02) : 131 - 148
  • [25] Quantum projections on conceptual subspaces
    Martinez-Mingo, Alejandro
    Jorge-Botana, Guillermo
    Martinez-Huertas, Jose Angel
    Albacete, Ricardo Olmos
    COGNITIVE SYSTEMS RESEARCH, 2023, 82
  • [26] OPTIMIZING OBLIQUE PROJECTIONS FOR NONLINEAR SYSTEMS USING TRAJECTORIES
    Otto, Samuel E.
    Padovan, Alberto
    Rowley, Clarence W.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2022, 44 (03): : A1681 - A1702
  • [27] ON PROJECTIONS ON SUBSPACES OF CODIMENSION ONE
    ROLEWICZ, S
    STUDIA MATHEMATICA, 1990, 96 (01) : 17 - 19
  • [28] BANDS, RIESZ SUBSPACES AND PROJECTIONS
    DEJONGE, E
    PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1982, 85 (02): : 201 - 214
  • [29] Sampling of shifted fan beam projections for region of interest reconstruction
    Brokish, Jeffrey
    Bresler, Yoram
    2005 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD, VOLS 1-5, 2005, : 1867 - 1870
  • [30] PROJECTIONS INTO SUBSPACES OF FINITE CODIMENSION
    CHENEY, EW
    PRICE, KH
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (07): : 1080 - &