Fuzzy Classification Function of Standard Fuzzy -Means Algorithm for Data with Tolerance Using Kernel Function

被引:0
|
作者
Kanzawa, Yuchi [1 ]
Endo, Yasunori [2 ]
Miyamoto, Sadaaki [2 ]
机构
[1] Shibaura Inst Technol, 3-7-5 Toyosu, Tokyo 1358548, Japan
[2] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, the fuzzy, classification functions, of the standard fuzzy c-means for data with tolerance using kernel functions are proposed. First, the standard clustering algorithm for data with tolerance using kernel functions are introduced. Second, the fuzzy classification function for fuzzy c-means without tolerance using kernel functions is discussed as the solution of a certain optimization problem. Third, the optimization problem is shown so that the solutions are the fuzzy classification function values for the standard fuzzy c-means algorithms using kernel functions with respect to data with tolerance. Fourth, Karush-Kuhn-Tucker conditions of the objective function is considered, and the iterative algorithm is proposed for the optimization problem. Some numerical examples are shown.
引用
收藏
页码:122 / +
页数:2
相关论文
共 50 条
  • [31] Incremental Kernel Fuzzy Means
    Havens, Timothy C.
    Bezdek, James C.
    Palaniswami, Marimuthu
    COMPUTATIONAL INTELLIGENCE, 2012, 399 : 3 - +
  • [32] MPEG video traffic modeling and classification using Fuzzy C-Means algorithm with Divergence-based Kernel
    Tran, Chung Nguyen
    Park, Dong-Chul
    NEURAL INFORMATION PROCESSING, PT 2, PROCEEDINGS, 2006, 4233 : 439 - 447
  • [33] Modeling and classification of audio signals using Gradient-Based Fuzzy C-Means algorithm with a Mercer Kernel
    Park, Dong-Chul
    Tran, Chung Nguyen
    Min, Byung-Jae
    Park, Sancho
    PRICAI 2006: TRENDS IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2006, 4099 : 1104 - 1108
  • [34] A fuzzy microaggregation algorithm using fuzzy c-means
    Torra, Vicenc
    ARTIFICIAL INTELLIGENCE RESEARCH AND DEVELOPMENT, 2015, 277 : 214 - 223
  • [35] Improvement of Fuzzy KNN Classification Algorithm Based on Fuzzy C-means
    Yu, Kun
    Geng, Yushui
    Li, Xuemei
    Yang, Mengjie
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND APPLICATION ENGINEERING (CSAE2018), 2018,
  • [36] Classification of satellite images using Rp fuzzy c means for unsupervised classification algorithm
    Mantilla, Luis
    2019 IEEE COLOMBIAN CONFERENCE ON APPLICATIONS IN COMPUTATIONAL INTELLIGENCE (COLCACI), 2019,
  • [37] On the Comparison of Fuzzy Kernel Regression Estimator and Fuzzy Radial Basis Function Networks
    Pehlivan, Nimet Yapici
    Apaydin, Aysen
    GAZI UNIVERSITY JOURNAL OF SCIENCE, 2008, 21 (03): : 87 - 95
  • [38] A Constructing Method of Fuzzy Classifier Using Kernel K-means Clustering Algorithm
    Yang, Aimin
    Li, Qing
    Li, Xinguang
    2009 SECOND INTERNATIONAL SYMPOSIUM ON KNOWLEDGE ACQUISITION AND MODELING: KAM 2009, VOL 2, 2009, : 73 - +
  • [39] Performance research of Gaussian function weighted fuzzy C-means algorithm
    Liu, Xiaofang
    Li, Xiaowen
    Yang, Chun
    He, Binbin
    Zhang, Ying
    MIPPR 2007: PATTERN RECOGNITION AND COMPUTER VISION, 2007, 6788
  • [40] Food image segmentation using an improved kernel fuzzy c-means algorithm
    Du, C.-J
    Sun, D.-W.
    TRANSACTIONS OF THE ASABE, 2007, 50 (04): : 1341 - 1348