Feasibility of near-infrared hyperspectral imaging to differentiate Canadian wheat classes

被引:132
|
作者
Mahesh, S. [1 ]
Manickavasagan, A. [1 ]
Jayas, D. S. [1 ]
Paliwal, J. [1 ]
White, N. D. G. [2 ]
机构
[1] Univ Manitoba, Dept Biosyst Engn, Winnipeg, MB R3T 5V6, Canada
[2] Agr & Agri Food Canada, Cereal Res Ctr, Winnipeg, MB R3T 2M9, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1016/j.biosystemseng.2008.05.017
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Differentiation of wheat classes is one of the important challenges to the Canadian grain industry. Even though some wheat classes may look similar, their chemical composition and consequently the end-product quality can vary significantly. Visual differentiation of wheat classes suffers from disadvantages such as inconsistency, low throughput, and labour intensiveness. A near-infrared (NIR) hyperspectral imaging system was used to develop classification models to differentiate wheat classes grown in western Canada. Wheat bulk samples were scanned in the wavelength region of 960-1700 nm at 10 nm intervals using an InGaAs NIR camera. Seventy-five relative reflectance intensities were extracted from the scanned images and used for the differentiation of wheat classes using 2. statistical classifier and an artificial neural network (ANN) classifier. Classification accuracies were 100% in classifying Canada Prairie Spring Red (CPSR), Canada Western Red Winter (CWRW), and Canada Western Soft White Spring (CWSWS) wheat classes and >94% for the other wheat classes (Canada Western Extra Strong (CWES), Canada Western Hard White Spring (CWHWS), Canada Western Red Spring (CWRS), Canada Prairie Spring White (CPSW) and Canada Western Amber Durum (CWAD)) using Linear Discriminant Analysis (LDA) with a leave-one-out cross-validation method. In Quadratic Discriminant Analysis (QDA) with a leave-one-out cross-validation method, the classification accuracies were >86% for all wheat classes. The overall classification accuracies of 60% training-30% testing-10% validation (referred to as 60-30-10) and 70% training-20% testing-10% validation (referred to as 70-20-10) ANN models were above 90% for independent validation sets using three-layer standard and Wardnet back-propagation neural network architectures. Crown Copyright (C) 2008 Published by Elsevier Ltd on behalf of IAgrE. All rights reserved.
引用
收藏
页码:50 / 57
页数:8
相关论文
共 50 条
  • [41] Rapid and nondestructive quantification of deoxynivalenol in individual wheat kernels using near-infrared hyperspectral imaging and chemometrics
    Shen, Guanghui
    Cao, Yaoyao
    Yin, Xianchao
    Dong, Fei
    Xu, Jianhong
    Shi, Jianrong
    Lee, Yin-Won
    FOOD CONTROL, 2022, 131
  • [42] Variety Identification of Raisins Using Near-Infrared Hyperspectral Imaging
    Feng, Lei
    Zhu, Susu
    Zhang, Chu
    Bao, Yidan
    Gao, Pan
    He, Yong
    MOLECULES, 2018, 23 (11):
  • [43] Detection of bruises on apples using near-infrared hyperspectral imaging
    Lu, R
    TRANSACTIONS OF THE ASAE, 2003, 46 (02): : 523 - 530
  • [44] Assessment of kernel presence in winter wheat ears at spikelet scale using near-infrared hyperspectral imaging
    Vincke, Damien
    Mercatoris, Benoit
    Eylenbosch, Damien
    Baeten, Vincent
    Vermeulen, Philippe
    JOURNAL OF CEREAL SCIENCE, 2022, 106
  • [45] Moisture content detection of maize seed based on visible/near-infrared and near-infrared hyperspectral imaging technology
    Zhang, Yanmin
    Guo, Wenchuan
    INTERNATIONAL JOURNAL OF FOOD SCIENCE AND TECHNOLOGY, 2020, 55 (02): : 631 - 640
  • [46] Feasibility of the Detection of Carrageenan Adulteration in Chicken Meat Using Visible/Near-Infrared (Vis/NIR) Hyperspectral Imaging
    Zhang, Yue
    Jiang, Hongzhe
    Wang, Wei
    APPLIED SCIENCES-BASEL, 2019, 9 (18):
  • [47] Predicting wheat kernels' protein content by near infrared hyperspectral imaging
    Yang Shuqin
    He Dongjian
    Ning Jifeng
    INTERNATIONAL JOURNAL OF AGRICULTURAL AND BIOLOGICAL ENGINEERING, 2016, 9 (02) : 163 - 170
  • [48] Classification of fungal infected wheat kernels using near-infrared reflectance hyperspectral imaging and support vector machine
    Zhang, H.
    Paliwal, J.
    Jayas, Digvir S.
    White, N. D. G.
    TRANSACTIONS OF THE ASABE, 2007, 50 (05) : 1779 - 1785
  • [49] FUNGAL DAMAGE DETECTION IN WHEAT USING SHORT-WAVE NEAR-INFRARED HYPERSPECTRAL AND DIGITAL COLOUR IMAGING
    Singh, C. B.
    Jayas, D. S.
    Paliwal, J.
    White, N. D. G.
    INTERNATIONAL JOURNAL OF FOOD PROPERTIES, 2012, 15 (1-2) : 11 - 24
  • [50] Subpixel detection of peanut in wheat flour using a matched subspace detector algorithm and near-infrared hyperspectral imaging
    Laborde, Antoine
    Jaillais, Benoit
    Roger, Jean-Michel
    Metz, Maxime
    Bouveresse, Delphine Jouan-Rimbaud
    Eveleigh, Luc
    Cordella, Christophe
    TALANTA, 2020, 216