Longitudinal Multiple Sclerosis Lesion Segmentation Using Multi-view Convolutional Neural Networks

被引:50
|
作者
Birenbaum, Ariel [1 ]
Greenspan, Hayit [2 ]
机构
[1] Tel Aviv Univ, Dept Elect Engn, Tel Aviv, Israel
[2] Tel Aviv Univ, Dept Biomed Engn, Tel Aviv, Israel
关键词
Multiple Sclerosis; CNN; Segmentation; Longitudinal data; BRAIN; ATLAS;
D O I
10.1007/978-3-319-46976-8_7
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Automatic segmentation of Multiple Sclerosis (MS) lesions is a challenging task due to their variability in shape, size, location and texture in Magnetic Resonance (MR) images. A reliable, automatic segmentation method can help diagnosis and patient follow-up while reducing the time consuming need of manual segmentation. In this paper, we present a fully automated method for MS lesion segmentation. The proposed method uses MR intensities and White Matter (WM) priors for extraction of candidate lesion voxels and uses Convolutional Neural Networks for false positive reduction. Our networks process longitudinal data, a novel contribution in the domain of MS lesion analysis. The method was tested on the ISBI 2015 dataset and obtained state-of-the-art Dice results with the performance level of a trained human rater.
引用
收藏
页码:58 / 67
页数:10
相关论文
共 50 条
  • [21] Simultaneous lesion and brain segmentation in multiple sclerosis using deep neural networks
    McKinley, Richard
    Wepfer, Rik
    Aschwanden, Fabian
    Grunder, Lorenz
    Muri, Raphaela
    Rummel, Christian
    Verma, Rajeev
    Weisstanner, Christian
    Reyes, Mauricio
    Salmen, Anke
    Chan, Andrew
    Wagner, Franca
    Wiest, Roland
    [J]. SCIENTIFIC REPORTS, 2021, 11 (01)
  • [22] MULTI-VIEW GAIT RECOGNITION USING 3D CONVOLUTIONAL NEURAL NETWORKS
    Wolf, Thomas
    Babaee, Mohammadreza
    Rigoll, Gerhard
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 4165 - 4169
  • [23] Multi-view representation learning for segmentation of abnormal tissues in medical images applied to multiple sclerosis lesion delineation
    Hassan Khastavaneh
    Hossein Ebrahimpour-Komleh
    [J]. SN Applied Sciences, 2019, 1
  • [24] Multi-view representation learning for segmentation of abnormal tissues in medical images applied to multiple sclerosis lesion delineation
    Khastavaneh, Hassan
    Ebrahimpour-Komleh, Hossein
    [J]. SN APPLIED SCIENCES, 2019, 1 (09)
  • [25] Multi-view Deep Neural Networks for multiclass skin lesion diagnosis
    Perez, Eduardo
    Ventura, Sebastian
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON OMNI-LAYER INTELLIGENT SYSTEMS (IEEE COINS 2022), 2022, : 1 - 6
  • [26] Quantification of Brain Lesions in Multiple Sclerosis Patients using Segmentation by Convolutional Neural Networks
    de Oliveira, Marcela
    Santinelli, Felipe Balistieri
    Piacenti-Silva, Marina
    Gomes Rocha, Fernando Coronetti
    Barbieri, Fabio Augusto
    Lisboa-Filho, Paulo Noronha
    Santos, Jorge Manuel
    Cardoso, Jaime dos Santos
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2020, : 2045 - 2048
  • [27] Multi-View Image Denoising Using Convolutional Neural Network
    Zhou, Shiwei
    Hu, Yu-Hen
    Jiang, Hongrui
    [J]. SENSORS, 2019, 19 (11)
  • [28] Moving object recognition using multi-view three-dimensional convolutional neural networks
    He, Tao
    Mao, Hua
    Yi, Zhang
    [J]. NEURAL COMPUTING & APPLICATIONS, 2017, 28 (12): : 3827 - 3835
  • [29] Automatic and Robust Segmentation of Multiple Sclerosis Lesions with Convolutional Neural Networks
    Afzal, H. M. Rehan
    Luo, Suhuai
    Ramadan, Saadallah
    Lechner-Scott, Jeannette
    Amin, Mohammad Ruhul
    Li, Jiaming
    Afzal, M. Kamran
    [J]. CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 66 (01): : 977 - 991
  • [30] Automated segmentation of multiple sclerosis lesions based on convolutional neural networks
    Haj Messaoud, Nada
    Mansour, Asma
    Aissi, Mouna
    Ayari, Rim
    Frih, Mahbouba
    Ben Abdallah, Asma
    Bedoui, Mohamed Hedi
    [J]. COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION, 2023, 11 (04): : 1359 - 1377