Logarithmic Holder Estimates of p-Harmonic Extension Operators in a Metric Measure Space

被引:0
|
作者
Itoh, Tsubasa [1 ]
机构
[1] Hokkaido Univ, Dept Math, Kita Ku, Sapporo, Hokkaido 0600810, Japan
来源
关键词
Modulus of continuity; p-harmonic; p-Dirichlet solution; metric measure space; p-capacity;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let 1 < p < infinity and let X be a metric measure space with a doubling measure and a (1, p)-Poincare inequality. Let Omega be a bounded domain in X. For a function f on partial derivative Omega we denote by P(Omega)f the p-harmonic extension of f over Omega. It is well known that if Omega is p-regular and f is an element of (partial derivative Omega), then P(Omega)f is continuous in (Omega) over bar. We characterize the family of domains such that logarithmic Holder continuity of boundary functions f ensures logarithmic Holder continuity of P(Omega)f.
引用
收藏
页码:163 / 169
页数:7
相关论文
共 50 条
  • [21] THE p-HARMONIC MEASURE OF A SMALL SPHERICAL CAP
    Deblassie, Dante
    Smits, Robert G.
    MATEMATICHE, 2016, 71 (01): : 149 - 171
  • [22] p-harmonic measure is not additive on null sets
    Llorente, JG
    Manfredi, JJ
    Wu, JM
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2005, 4 (02) : 357 - 373
  • [23] The Reverse Holder Inequality for the Solution to p-Harmonic Type System
    Cao, Zhenhua
    Bao, Gejun
    Li, Ronglu
    Zhu, Haijing
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2008, 2008 (1)
  • [24] The Perron method for p-harmonic functions in metric spaces
    Björn, A
    Björn, J
    Shanmugalingam, N
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 195 (02) : 398 - 429
  • [25] The Dirichlet problem for p-harmonic functions on metric spaces
    Björn, A
    Björn, J
    Shanmugalingam, N
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2003, 556 : 173 - 203
  • [26] Optimal regularity estimates for parabolic p-harmonic equations
    Yao, Fengping
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 364 (02) : 576 - 590
  • [27] Wolff potential estimates for Cheeger p-harmonic functions
    Takanobu Hara
    Collectanea Mathematica, 2018, 69 : 407 - 426
  • [28] Wolff potential estimates for Cheeger p-harmonic functions
    Hara, Takanobu
    COLLECTANEA MATHEMATICA, 2018, 69 (03) : 407 - 426
  • [29] The Behavior at Infinity of p-Harmonic Measure in an Infinite Slab
    DeBlassie, Dante
    Smits, Robert G.
    MICHIGAN MATHEMATICAL JOURNAL, 2021, 70 (03) : 561 - 585
  • [30] A regularity result for p-harmonic equations with measure data
    Carozza, Menita
    di Napoli, Antonia Passarelli
    COLLECTANEA MATHEMATICA, 2004, 55 (01) : 11 - 19