Semi-supervised Constrained Clustering with Cluster Outlier Filtering

被引:0
|
作者
Bravo, Cristian [1 ]
Weber, Richard [1 ]
机构
[1] Univ Chile, Dept Ind Engn, Santiago, Chile
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Constrained clustering addresses the problem of creating minimum variance clusters with the added complexity that there is a set of constraints that must be fulfilled by the elements in the cluster. Research in this area has focused on "must-link" and "cannot-link" constraints, in which pails of elements must be in the same or in different clusters, respectively. In this work we present a heuristic procedure to perform clustering in two classes when the restrictions affect all the elements of the two clusters in such a. way that they depend on the elements present; in the cluster. This problem is highly susceptible to outliers in each cluster (extreme values that create infeasible solutions), so the procedure eliminates elements with extreme values in both clusters, and achieves adequate performance measures at; the same time. The experiments performed on a company database allow to discover a great deal of information, with results that are more readily interpretable when compared to classical k-means clustering.
引用
收藏
页码:347 / 354
页数:8
相关论文
共 50 条
  • [31] Fast semi-supervised evidential clustering
    Antoine, Violaine
    Guerrero, Jose A.
    Xie, Jiarui
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2021, 133 (133) : 116 - 132
  • [32] Semi-supervised Power Iteration Clustering
    Yang, Yuqi
    Bie, Rongfang
    Wu, Hao
    Xu, Shuaijing
    Li, Liangchi
    2018 INTERNATIONAL CONFERENCE ON IDENTIFICATION, INFORMATION AND KNOWLEDGE IN THE INTERNET OF THINGS, 2019, 147 : 588 - 595
  • [33] Semi-Supervised Clustering with Neural Networks
    Shukla, Ankita
    Cheema, Gullal S.
    Anand, Saket
    2020 IEEE SIXTH INTERNATIONAL CONFERENCE ON MULTIMEDIA BIG DATA (BIGMM 2020), 2020, : 152 - 161
  • [34] Evolutionary semi-supervised fuzzy clustering
    Liu, H
    Huang, ST
    PATTERN RECOGNITION LETTERS, 2003, 24 (16) : 3105 - 3113
  • [35] A Semi-supervised Clustering for Incomplete Data
    Goel, Sonia
    Tushir, Meena
    APPLICATIONS OF ARTIFICIAL INTELLIGENCE TECHNIQUES IN ENGINEERING, SIGMA 2018, VOL 1, 2019, 698 : 323 - 331
  • [36] Active semi-supervised fuzzy clustering
    Grira, Nizar
    Crucianu, Michel
    Boujemaa, Nozha
    PATTERN RECOGNITION, 2008, 41 (05) : 1834 - 1844
  • [37] Semi-supervised hierarchical clustering algorithms
    Amar, A
    Labzour, NT
    Bensaid, A
    SIXTH SCANDINAVIAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 1997, 40 : 232 - 239
  • [38] Input validation for semi-supervised clustering
    Yip, Kevin Y.
    Ng, Michael K.
    Cheung, David W.
    ICDM 2006: SIXTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, WORKSHOPS, 2006, : 479 - 483
  • [39] Research Progress on Semi-Supervised Clustering
    Qin, Yue
    Ding, Shifei
    Wang, Lijuan
    Wang, Yanru
    COGNITIVE COMPUTATION, 2019, 11 (05) : 599 - 612
  • [40] A survey on semi-supervised graph clustering
    Daneshfar, Fatemeh
    Soleymanbaigi, Sayvan
    Yamini, Pedram
    Amini, Mohammad Sadra
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 133 (133)