An Adaptive Framework for Clustering Data Streams

被引:0
|
作者
Chandrika [1 ]
Kumar, K. R. Ananda [2 ]
机构
[1] MCE, Dept Comp Sci & Engn, Hassan, India
[2] SJBIT, Dept Comp Sci & Engn, Bangalore, Karnataka, India
关键词
Data streams; Methodical quality; temporal quality; resource adaptation; Algorithm granularity; adaptation factors; Data stream Clustering;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In recent years, advances in hardware technology have facilitated the ability to collect data continuously. Simple transactions of everyday life such as using a credit card, a phone or browsing the web lead to automated data storage thus generating massive streams of data. These streams consist of millions or billions of updates and must be processed to extract the useful information to enable timely strategic decisions. Mining data streams have many inherent challenges among which the most important challenges are adapting to available resources and assuring quality of the output result. The purpose of this paper is to use a novel framework that accounts for both quality awareness and resource adaptation for clustering data streams.
引用
收藏
页码:704 / +
页数:2
相关论文
共 50 条
  • [21] Correlation Clustering in Data Streams
    Ahn, Kook Jin
    Cormode, Graham
    Guha, Sudipto
    McGregor, Andrew
    Wirth, Anthony
    ALGORITHMICA, 2021, 83 (07) : 1980 - 2017
  • [22] Clustering Multiple Data Streams
    Balzanella, Antonio
    Lechevallier, Yves
    Verde, Rosanna
    NEW PERSPECTIVES IN STATISTICAL MODELING AND DATA ANALYSIS, 2011, : 247 - 254
  • [23] Correlation Clustering in Data Streams
    Kook Jin Ahn
    Graham Cormode
    Sudipto Guha
    Andrew McGregor
    Anthony Wirth
    Algorithmica, 2021, 83 : 1980 - 2017
  • [24] Correlation Clustering in Data Streams
    Ahn, Kook Jin
    Cormode, Graham
    Guha, Sudipto
    McGregor, Andrew
    Wirth, Anthony
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 37, 2015, 37 : 2237 - 2246
  • [25] A co-evolutionary framework for adaptive multidimensional data clustering
    Hosny, Manar I.
    Al Hinti, Lubna
    Al-Malak, Sawsan
    INTELLIGENT DATA ANALYSIS, 2018, 22 (01) : 77 - 101
  • [26] Granularity adaptive density estimation and on demand clustering of concept-drifting data streams
    Zhu, Weiheng
    Pei, Jian
    Yin, Jian
    Xie, Yihuang
    DATA WAREHOUSING AND KNOWLEDGE DISCOVERY, PROCEEDINGS, 2006, 4081 : 322 - 331
  • [27] HE-Tree: a framework for detecting changes in clustering structure for categorical data streams
    Keke Chen
    Ling Liu
    The VLDB Journal, 2009, 18 : 1241 - 1260
  • [28] HE-Tree: a framework for detecting changes in clustering structure for categorical data streams
    Chen, Keke
    Liu, Ling
    VLDB JOURNAL, 2009, 18 (06): : 1241 - 1260
  • [29] A Semi-Supervised Weighted Clustering Framework Facing to Hybrid Attributes Data Streams
    Chen, Xinquan
    2010 8TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2010, : 5988 - 5993
  • [30] A Comparison of Clustering Algorithms for Data Streams
    Pereira, Cassio M. M.
    de Mello, Rodrigo F.
    INTEGRATED COMPUTING TECHNOLOGY, 2011, 165 : 59 - 74