A systolic algorithm for Euclidean distance transform

被引:8
|
作者
Miyazawa, M
Zeng, PF
Iso, N
Hirata, T
机构
[1] Brother Ind Ltd, Naka Ku, Nagoya, Aichi, Japan
[2] Donghua Univ, Sch Comp Sci, Shanghai 200051, Peoples R China
[3] Chukyo Univ, Sch Informat Sci & Technol, Chikusa Ku, Nagoya, Aichi, Japan
[4] Nagoya Univ, Grad Sch Informat Sci, Chikusa Ku, Nagoya, Aichi 4648601, Japan
关键词
Euclidean distance transform; systolic array; hardware algorithm; image processing;
D O I
10.1109/TPAMI.2006.133
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Euclidean distance transform is one of the fundamental operations in image processing. It has been widely used in computer vision, pattern recognition, morphological filtering, and robotics. This paper proposes a systolic algorithm that computes the Euclidean distance map of an N x N binary image in 3N clocks on 2N(2) processing cells. The algorithm is designed so that the hardware resources are reduced; especially no mulitipliers are used and, thus, it facilitates VLSI implementation.
引用
收藏
页码:1127 / 1134
页数:8
相关论文
共 50 条
  • [31] Parallel Euclidean distance transformation algorithm
    Katholieke Universiteit Leuven, Heverlee, Belgium
    CVIU Comput Vision Image Undersanding, 1 (15-26):
  • [32] A HIGH PERFORMANCE 3D EXACT EUCLIDEAN DISTANCE TRANSFORM ALGORITHM FOR DISTRIBUTED COMPUTING
    Torelli, Julio Cesar
    Fabbri, Ricardo
    Travieso, Gonzalo
    Bruno, Odemir Martinez
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2010, 24 (06) : 897 - 915
  • [33] Euclidean distance transform of digital images in arbitrary dimensions
    Xu, Dong
    Li, Hua
    ADVANCES IN MULTIMEDIA INFORMATION PROCESSING - PCM 2006, PROCEEDINGS, 2006, 4261 : 72 - 79
  • [34] Computing the Euclidean distance transform on a linear array of processors
    Gavrilova, ML
    Alsuwaiyel, MH
    JOURNAL OF SUPERCOMPUTING, 2003, 25 (02): : 177 - 185
  • [35] Optimizing Euclidean distance transform values by number theory
    Creutzburg, R
    Takala, J
    NONLINEAR IMAGE PROCESSING AND PATTERN ANALYSIS XII, 2001, 4304 : 146 - 154
  • [36] Two theorems on Euclidean distance matrices and Gale transform
    Alfakih, AY
    Wolkowicz, H
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 340 (1-3) : 149 - 154
  • [37] Computing the Euclidean Distance Transform on a Linear Array of Processors
    Marina L. Gavrilova
    Muhammad H. Alsuwaiyel
    The Journal of Supercomputing, 2003, 25 : 177 - 185
  • [38] Generating Triangulated Macromolecular Surfaces by Euclidean Distance Transform
    Xu, Dong
    Zhang, Yang
    PLOS ONE, 2009, 4 (12):
  • [39] A EUCLIDEAN DISTANCE TRANSFORM USING GRAYSCALE MORPHOLOGY DECOMPOSITION
    HUANG, CT
    MITCHELL, OR
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1994, 16 (04) : 443 - 448
  • [40] An Exact Euclidean Distance Transform for Universal Path Planning
    Elizondo-Leal, Juan C.
    Ramirez-Torres, Gabriel
    2010 IEEE ELECTRONICS, ROBOTICS AND AUTOMOTIVE MECHANICS CONFERENCE (CERMA 2010), 2010, : 62 - 67