Homology Cycles and Dependent Cycles of Hypergraphs

被引:0
|
作者
Wang, Jian-fang [1 ]
Xu, Xin [2 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[2] North China Univ Technol, Sch Sci, Beijing 100144, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
hypergraph; semilattice; cycle; maximal cycle; homology cycle;
D O I
10.1007/s10255-018-0749-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, some new concepts for hypergraphs are introduced. Based on the previous results, we do further research on cycle structures of hypergraphs and construct a more strictly complete cycle structure system of hypergraphs.
引用
收藏
页码:237 / 248
页数:12
相关论文
共 50 条
  • [21] On offset Hamilton cycles in random hypergraphs
    Dudek, Andrzej
    Helenius, Laars
    DISCRETE APPLIED MATHEMATICS, 2018, 238 : 77 - 85
  • [22] Forbidding Hamilton cycles in uniform hypergraphs
    Han, Jie
    Zhao, Yi
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2016, 143 : 107 - 115
  • [23] Counting Hamilton Cycles in Dirac Hypergraphs
    Asaf Ferber
    Liam Hardiman
    Adva Mond
    Combinatorica, 2023, 43 : 665 - 680
  • [24] Rainbow Hamilton cycles in uniform hypergraphs
    Dudek, Andrzej
    Frieze, Alan
    Rucinski, Andrzej
    ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (01):
  • [25] Hamiltonian Berge cycles in random hypergraphs
    Bal, Deepak
    Berkowitz, Ross
    Devlin, Pat
    Schacht, Mathias
    COMBINATORICS PROBABILITY & COMPUTING, 2021, 30 (02): : 228 - 238
  • [26] The number of hypergraphs without linear cycles
    Balogh, Jozsef
    Narayanan, Bhargav
    Skokan, Jozef
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2019, 134 : 309 - 321
  • [27] Counting Hamilton Cycles in Dirac Hypergraphs
    Ferber, Asaf
    Hardiman, Liam
    Mond, Adva
    COMBINATORICA, 2023, 43 (4) : 665 - 680
  • [28] Loose Hamilton Cycles in Regular Hypergraphs
    Dudek, Andrzej
    Frieze, Alan
    Rucinski, Andrzej
    Sileikis, Matas
    COMBINATORICS PROBABILITY & COMPUTING, 2015, 24 (01): : 179 - 194
  • [29] Loose cores and cycles in random hypergraphs
    Cooley, Oliver
    Kang, Mihyun
    Zalla, Julian
    ELECTRONIC JOURNAL OF COMBINATORICS, 2022, 29 (04):
  • [30] Covering and tiling hypergraphs with tight cycles
    Han, Jie
    Lo, Allan
    Sanhueza-Matamala, Nicolas
    COMBINATORICS PROBABILITY & COMPUTING, 2021, 30 (02): : 288 - 329