LARGEST EIGENVALUES OF SPARSE INHOMOGENEOUS ERDOS-RENYI GRAPHS

被引:25
|
作者
Benaych-Georges, Florent [1 ]
Bordenave, Charles [2 ]
Knowles, Antti [3 ]
机构
[1] Univ Paris 05, CNRS, UMR 8145, MAP 5, 45 Rue St Peres, F-75270 Paris 6, France
[2] Univ Paul Sabatier, CNRS, Inst Math, UMR 5219, F-31062 Toulouse 09, France
[3] Univ Geneva, Sect Math, 2-4 Rue Lievre, CH-1211 Geneva 4, Switzerland
来源
ANNALS OF PROBABILITY | 2019年 / 47卷 / 03期
基金
瑞士国家科学基金会;
关键词
Erdos-Renyi graph; random matrices; extreme eigenvalues;
D O I
10.1214/18-AOP1293
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider inhomogeneous Erdos-Renyi graphs. We suppose that the maximal mean degree d satisfies d << log n. We characterise the asymptotic behaviour of the (1-omicron)(n)(1) largest eigenvalues of the adjacency matrix and its centred version. We prove that these extreme eigenvalues are governed at first order by the largest degrees and, for the adjacency matrix, by the nonzero eigenvalues of the expectation matrix. Our results show that the extreme eigenvalues exhibit a novel behaviour which in particular rules out their convergence to a nondegenerate point process. Together with the companion paper [Benaych-Georges, Bordenave and Knowles (2017)], where we analyse the extreme eigenvalues in the complementary regime d >> log n, this establishes a crossover in the behaviour of the extreme eigenvalues around d similar to log n. Our proof relies on a tail estimate for the Poisson approximation of an inhomogeneous sum of independent Bernoulli random variables, as well as on an estimate on the operator norm of a pruned graph due to Le, Levina, and Vershynin from [Random Structures Algorithms 51 (2017) 538-561].
引用
收藏
页码:1653 / 1676
页数:24
相关论文
共 50 条
  • [31] On Hamilton cycles in Erdos-Renyi subgraphsof large graphs
    Johansson, Tony
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2020, 57 (01) : 132 - 149
  • [32] Type Size Code for Compressing Erdos-Renyi Graphs
    Iri, Nematollah
    [J]. 2021 55TH ANNUAL CONFERENCE ON INFORMATION SCIENCES AND SYSTEMS (CISS), 2021,
  • [33] On the Incompatibility of Connectivity and Local Pooling in Erdos-Renyi Graphs
    Wildman, Jeffrey
    Weber, Steven
    [J]. 2013 51ST ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2013, : 676 - 683
  • [34] Consensus of Interacting Particle Systems on Erdos-Renyi Graphs
    Schoenebeck, Grant
    Yu, Fang-Yi
    [J]. SODA'18: PROCEEDINGS OF THE TWENTY-NINTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2018, : 1945 - 1964
  • [35] On large deviation properties of Erdos-Renyi random graphs
    Engel, A
    Monasson, R
    Hartmann, AK
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2004, 117 (3-4) : 387 - 426
  • [36] Erdos-Renyi Poissonized
    Curien, Nicolas
    [J]. COMPTES RENDUS MATHEMATIQUE, 2024, 362
  • [37] Gambler's ruin problem on Erdos-Renyi graphs
    Neda, Zoltan
    Davidova, Larissa
    Ujvari, Szerena
    Istrate, Gabriel
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2017, 468 : 147 - 157
  • [38] Concentration of the spectral norm of Erdos-Renyi random graphs
    Lugosi, Gabor
    Mendelson, Shahar
    Zhivotovskiy, Nikita
    [J]. BERNOULLI, 2020, 26 (03) : 2253 - 2274
  • [39] Seeded Graph Matching for Correlated Erdos-Renyi Graphs
    Lyzinski, Vince
    Fishkind, Donniell E.
    Priebe, Carey E.
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2014, 15 : 3513 - 3540
  • [40] ERDOS-RENYI LAWS
    CSORGO, S
    [J]. ANNALS OF STATISTICS, 1979, 7 (04): : 772 - 787