Spatial-spectral ant colony optimization for hyperspectral image classification

被引:20
|
作者
Sharma, Shakti [1 ]
Buddhiraju, Krishna Mohan [1 ]
机构
[1] Indian Inst Technol, Ctr Studies Resources Engn, Bombay 400076, Maharashtra, India
关键词
EXTRACTION; FRAMEWORK; MACHINE;
D O I
10.1080/01431161.2018.1430403
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Hyperspectral satellite images contain a lot of information in terms of spectral behaviour of objects and this information can be extracted by several mechanisms including image classification. Traditional spectral information-based methods of hyperspectral image classification are generally followed by spatial information-driven post-processing techniques such as relaxation labelling and Markov Random Field. Spectral or spatial information alone may lead to different results depending upon scene captured. An algorithm which can incorporate influence of both spectral and spatial features is needed to address this problem. In this article, an ant colony optimisation-based hyperspectral image classification technique is proposed. This method exploits both spatial and spectral features. Five standard hyperspectral data sets have been used to validate the proposed method and comparisons with other approaches have been carried out. It was observed that the proposed method yielded a significant improvement in classification accuracy. For the instance, nearly 10% increase in accuracy was observed when compared to Support Vector Machine for Indian pines, Botswana, and Salinas images.
引用
收藏
页码:2702 / 2717
页数:16
相关论文
共 50 条
  • [1] Spatial-Spectral ConvNeXt for Hyperspectral Image Classification
    Zhu, Yimin
    Yuan, Kexin
    Zhong, Wenlong
    Xu, Linlin
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 (5453-5463) : 5453 - 5463
  • [2] Spatial-Spectral Transformer for Hyperspectral Image Classification
    He, Xin
    Chen, Yushi
    Lin, Zhouhan
    [J]. REMOTE SENSING, 2021, 13 (03) : 1 - 22
  • [3] Spatial-Spectral BERT for Hyperspectral Image Classification
    Ashraf, Mahmood
    Zhou, Xichuan
    Vivone, Gemine
    Chen, Lihui
    Chen, Rong
    Majdard, Reza Seifi
    [J]. REMOTE SENSING, 2024, 16 (03)
  • [4] Learning Spatial-Spectral Features for Hyperspectral Image Classification
    Shu, Lei
    McIsaac, Kenneth
    Osinski, Gordon R.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (09): : 5138 - 5147
  • [5] A spatial-spectral SIFT for hyperspectral image matching and classification
    Li, Yanshan
    Li, Qingteng
    Liu, Yan
    Xie, Weixin
    [J]. PATTERN RECOGNITION LETTERS, 2019, 127 : 18 - 26
  • [6] MambaHSI: Spatial-Spectral Mamba for Hyperspectral Image Classification
    Li, Yapeng
    Luo, Yong
    Zhang, Lefei
    Wang, Zengmao
    Du, Bo
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [7] Spatial-Spectral Decoupling Framework for Hyperspectral Image Classification
    Fang, Jie
    Zhu, Zhijie
    He, Guanghua
    Wang, Nan
    Cao, Xiaoqian
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [8] SPATIAL-SPECTRAL CONTRASTIVE LEARNING FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Guan, Peiyan
    Lam, Edmund Y.
    [J]. 2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 1372 - 1375
  • [9] HYPERSPECTRAL IMAGE CLASSIFICATION USING ANT COLONY OPTIMIZATION ALGORITHM BASED ON JOINT SPECTRAL-SPATIAL PARAMETERS
    Sharma, Shakti
    Buddhiraju, Krishna Mohan
    Dasghondhi, Gaurav Kumar
    [J]. 2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 3210 - 3213
  • [10] Joint Spatial-Spectral Attention Network for Hyperspectral Image Classification
    Li, Lei
    Yin, Jihao
    Jia, Xiuping
    Li, Sen
    Han, Bingnan
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2021, 18 (10) : 1816 - 1820