Comparison of natural and finite element interpolation functions behavior

被引:2
|
作者
Goncalves, B. M. F. [1 ]
Afonso, M. M. [2 ]
Coppoli, E. H. R. [2 ]
Ramdane, B. [3 ]
Marechal, Y. [3 ]
Vollaire, C. [4 ]
Krahenbuhl, L. [4 ]
机构
[1] Fed Inst North Minas Gerais IFNMG, Montes Claros, MG, Brazil
[2] UFSJ, CEFET MG, Elect Engn Postgrad Program, Belo Horizonte, MG, Brazil
[3] Elect Engn Lab Grenoble G2ELAB, Grenoble, France
[4] Ecole Cent Lyon, AMPERE Lab, Lyon, France
关键词
interface condition; material discontinuities; natural element method; visibility criterion; METHOD C-NEM;
D O I
10.1002/jnm.2230
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, the interpolation functions behavior of the natural element method (NEM) and the finite element method (FEM) are compared. It is discussed how the unknown in both methods affects the stiffness matrix and contributes to NEM better accuracy. The visibility criterion and the constrained NEM are also addressed, and a pseudoalgorithm is proposed to implement the constrained Voronoi diagram, which is the base for the constrained NEM. A complex heterogeneous magnetic problem is solved by both FEM and NEM methods and their solutions are compared. It is shown that for the same discretization, the number of contributions for NEM is in general bigger than those related to the FEM and better accuracy results for NEM.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Vector Interpolation on Natural Element Method
    Botelho, Diego Pereira
    Marechal, Yves
    Ramdane, Brahim
    IEEE TRANSACTIONS ON MAGNETICS, 2016, 52 (03)
  • [22] A C(2) FINITE-ELEMENT AND INTERPOLATION
    GAO, J
    COMPUTING, 1993, 50 (01) : 69 - 76
  • [23] The finite element method enriched by interpolation covers
    Kim, Jaehyung
    Bathe, Klaus-Juergen
    COMPUTERS & STRUCTURES, 2013, 116 : 35 - 49
  • [24] ON THE INTERPOLATION FUNCTION IN THE FINITE-ELEMENT METHOD
    POCESKI, A
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1990, 70 (06): : T668 - T671
  • [25] Interpolation Hermite Polynomials For Finite Element Method
    Gusev, Alexander
    Vinitsky, Sergue
    Chuluunbaatar, Ochbadrakh
    Chuluunbaatar, Galmandakh
    Gerdt, Vladimir
    Derbov, Vladimir
    Gozdz, Andrzej
    Krassovitskiy, Pavel
    MATHEMATICAL MODELING AND COMPUTATIONAL PHYSICS 2017 (MMCP 2017), 2018, 173
  • [26] Optimum interpolation functions for boundary element method
    Vable, M
    Ammons, BA
    Fox, ME
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2000, 24 (02) : 189 - 200
  • [27] INTERPOLATION OF FUNCTIONS WITH A FINITE NUMBER OF SINGULARITIES BY MEANS OF RATIONAL FUNCTIONS
    IBRAGIMOV, II
    DOKLADY AKADEMII NAUK SSSR, 1968, 181 (06): : 1314 - +
  • [28] FINITE BOUNDARY INTERPOLATION BY UNIVALENT-FUNCTIONS
    MACGREGOR, TH
    TEPPER, DE
    JOURNAL OF APPROXIMATION THEORY, 1988, 52 (03) : 315 - 321
  • [29] Analysis of transient wave propagation dynamics using the enriched finite element method with interpolation cover functions
    Chai, Yingbin
    Li, Wei
    Liu, Zuyuan
    APPLIED MATHEMATICS AND COMPUTATION, 2022, 412
  • [30] An Enriched Finite Element Method with Appropriate Interpolation Cover Functions for Transient Wave Propagation Dynamic Problems
    Qu, Jue
    Xue, Hongjun
    Li, Yancheng
    Chai, Yingbin
    MATHEMATICS, 2022, 10 (09)