Using Long Short Term Memory Based Approaches for Carbon Steel Fatigue Remaining Useful Life Prediction

被引:8
|
作者
Shi, Peng [1 ]
Hong, Liu [2 ]
He, David [1 ,3 ]
机构
[1] Northeastern Univ, Coll Mech Engn & Automat, Shenyang, Liaoning, Peoples R China
[2] Wuhan Univ Technol, Sch Mech & Elect Engn, Wuhan, Hubei, Peoples R China
[3] Univ Illinois, Dept Mech & Ind Engn, Chicago, IL 60607 USA
关键词
prediction of fatigue remaining useful life; long short term memory; deep learning; medium-carbon steel; convolutional neural network;
D O I
10.1109/PHM-Chongqing.2018.00187
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In the modern industry, the prediction of fatigue remaining useful life of materials is important for safety improvement and cost reduction. In the era of Internet of Things, large amount of data can be easily collected and analyzed using deep learning based approach for decision making. Deep learning represents a new opportunity for effective prediction of fatigue remaining useful life prediction in facing the challenge of big data. This paper presents a deep learning based approach for material fatigue remaining useful life prediction. First, the relationship between acoustic emission signal and fatigue life is established with a long short term memory (LSTM) model. Then, the convolutional neural network (CNN) models are combined with LSTM to extract features. Finally, based on the carbon steel samples, the model is tested with 1193 groups of carbon steel fatigue test data. As results shown, the prediction results are promising.
引用
收藏
页码:1055 / 1060
页数:6
相关论文
共 50 条
  • [11] Remaining Useful Life Prediction of Turbofan Engine Using Hybrid Model Based on Autoencoder and Bidirectional Long Short-Term Memory
    Song Y.
    Shi G.
    Chen L.
    Huang X.
    Xia T.
    Journal of Shanghai Jiaotong University (Science), 2018, 23 (Suppl 1): : 85 - 94
  • [12] Tool remaining useful life prediction using deep transfer reinforcement learning based on long short-term memory networks
    Yao, Jiachen
    Lu, Baochun
    Zhang, Junli
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2022, 118 (3-4): : 1077 - 1086
  • [13] Remaining Useful Life Prediction of Turbofan Engine Using Hybrid Model Based on Autoencoder and Bidirectional Long Short-Term Memory
    宋亚
    石郭
    陈乐懿
    黄鑫沛
    夏唐斌
    Journal of Shanghai Jiaotong University(Science), 2018, (S1) : 85 - 94
  • [14] Tool remaining useful life prediction using deep transfer reinforcement learning based on long short-term memory networks
    Jiachen Yao
    Baochun Lu
    Junli Zhang
    The International Journal of Advanced Manufacturing Technology, 2022, 118 : 1077 - 1086
  • [15] A remaining useful life prediction method based on nested long short-term memory network for mechanical equipment
    Cheng Y.
    Zhu H.
    Wu J.
    Shao X.
    Zhongguo Kexue Jishu Kexue/Scientia Sinica Technologica, 2022, 52 (01): : 76 - 87
  • [16] A long short-term memory neural network based Wiener process model for remaining useful life prediction
    Chen, Xiaowu
    Liu, Zhen
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2022, 226
  • [17] Remaining useful life prediction techniques for electric valves based on convolution auto encoder and long short term memory
    Wang, Hang
    Peng, Min-jun
    Miao, Zhuang
    Liu, Yong-kuo
    Ayodeji, Abiodun
    Hao, Chengming
    ISA TRANSACTIONS, 2021, 108 : 333 - 342
  • [18] Bearing remaining useful life prediction with convolutional long short-term memory fusion networks
    Wan, Shaoke
    Li, Xiaohu
    Zhang, Yanfei
    Liu, Shijie
    Hong, Jun
    Wang, Dongfeng
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2022, 224
  • [19] Prediction Interval Estimation of Aeroengine Remaining Useful Life Based on Bidirectional Long Short-Term Memory Network
    Chen, Chuang
    Lu, Ningyun
    Jiang, Bin
    Xing, Yin
    Zhu, Zheng Hong
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
  • [20] Battery Remaining Useful Life Prediction Supported by Long Short-Term Memory Neural Network
    Marri, Iacopo
    Petkovski, Emil
    Cristaldi, Loredana
    Faifer, Marco
    2023 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE, I2MTC, 2023,