Load-separation curves for the contact of self-affine rough surfaces

被引:41
|
作者
Papangelo, Antonio [1 ]
Hoffmann, Norbert [1 ,2 ]
Ciavarella, Michele [3 ]
机构
[1] Hamburg Univ Technol, Dept Mech Engn, Schwarzenberg Campus 1, D-21073 Hamburg, Germany
[2] Imperial Coll London, Exhibit Rd, London SW7 2AZ, England
[3] Politecn BARI, Dept Mech Math & Management, V Gentile 182, I-70126 Bari, Italy
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
关键词
ELASTIC CONTACT; RUBBER-FRICTION; MECHANICS; MODELS; AREA;
D O I
10.1038/s41598-017-07234-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
There are two main approximate theories in the contact of rough solids: Greenwood-Williamson asperity theories (GW) and Persson theories. Neither of them has been fully assessed so far with respect to load-separation curves. Focusing on the most important case of low fractal dimension (D-f = 2.2) with extensive numerical studies we find that: (i) Persson's theory describes well the regime of intermediate pressures/contact area, but requires significant corrective factors: the latter depend also on upper wavevector cutoff of the roughness; hence, (ii) Persson's theory does not predict the correct functional dependence on magnification; (iii) asperity theories in the discrete version even neglecting interaction effects are more appropriate in the range of relatively large separations, also to take into consideration of the large scatter in actual realization of the surface.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Dynamical and geometrical exponents of self-affine rough surfaces on regular and random lattices
    Hosseinabadi, S.
    Movahed, S. M. Sadegh
    Rajabpour, M. A.
    Allaei, S. M. Vaez
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2014,
  • [32] Wetting of van der Waals solid films on self-affine rough surfaces
    Palasantzas, G
    Backx, GMEA
    [J]. PHYSICAL REVIEW B, 2003, 68 (03)
  • [33] Hydrothermal coupling in a self-affine rough fracture
    Neuville, A.
    Toussaint, R.
    Schmittbuhl, J.
    [J]. PHYSICAL REVIEW E, 2010, 82 (03):
  • [34] DYNAMIC FRICTION OF SELF-AFFINE SURFACES
    SCHMITTBUHL, J
    VILOTTE, JP
    ROUX, S
    [J]. JOURNAL DE PHYSIQUE II, 1994, 4 (02): : 225 - 237
  • [35] Self-affine properties of fracture surfaces
    Balankin, AS
    Sandoval, FJ
    [J]. REVISTA MEXICANA DE FISICA, 1997, 43 (04) : 545 - 591
  • [36] PERCOLATION THROUGH SELF-AFFINE SURFACES
    SCHMITTBUHL, J
    VILOTTE, JP
    ROUX, S
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (22): : 6115 - 6133
  • [37] Self-affine surfaces of polymer brushes
    Akgun, Bulent
    Lee, Dong Ryeol
    Kim, Hyeonjae
    Zhang, Haining
    Prucker, Oswald
    Wang, Jin
    Ruehe, Juergen
    Foster, Mark D.
    [J]. MACROMOLECULES, 2007, 40 (17) : 6361 - 6369
  • [38] THE GROWTH OF SELF-AFFINE FRACTAL SURFACES
    MEAKIN, P
    [J]. PHYSICA D, 1989, 38 (1-3): : 252 - 259
  • [39] ON THE FRACTIONAL DERIVATIVE OF A TYPE OF SELF-AFFINE CURVES
    Li, Kun Yuan
    Yao, Kui
    Zhang, Kai
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2023, 31 (05)
  • [40] Reexamination of the permeability-aperture relationship for rough fractures with mismatched self-affine surfaces
    Zheng, Junling
    Jin, Yi
    Dong, Jiabin
    Liu, Shunxi
    Zhang, Qing
    Song, Huibo
    Huang, Pinghua
    [J]. JOURNAL OF HYDROLOGY, 2022, 609