Atomically precise gold nanocrystal molecules with surface plasmon resonance

被引:209
|
作者
Qian, Huifeng [1 ]
Zhu, Yan [1 ]
Jin, Rongchao [1 ]
机构
[1] Carnegie Mellon Univ, Dept Chem, Pittsburgh, PA 15213 USA
关键词
atomic precision; face-centered cubic; nanomolecule; plasmonic excitation; CRYSTAL-STRUCTURE; LIGAND-EXCHANGE; NANOPARTICLES; CLUSTERS; METAL; RESOLUTION; SPECTRA; SHAPE; SIZE;
D O I
10.1073/pnas.1115307109
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Since Faraday's pioneering work on gold colloids, tremendous scientific research on plasmonic gold nanoparticles has been carried out, but no atomically precise Au nanocrystals have been achieved. This work reports the first example of gold nanocrystal molecules. Mass spectrometry analysis has determined its formula to be Au-333(SR)(79) (R = CH2CH2Ph). This magic sized nanocrystal molecule exhibits fcc-crystallinity and surface plasmon resonance at approximately 520 nm, hence, a metallic nanomolecule. Simulations have revealed that atomic shell closing largely contributes to the particular robustness of Au-333(SR)(79), albeit the number of free electrons (i.e., 333 - 79 = 254) is also consistent with electron shell closing based on calculations using a confined free electron model. Guided by the atomic shell closing growth mode, we have also found the next larger size of extraordinarily stability to be Au-similar to 530(SR)(similar to 100) after a size-focusing selection-which selects the robust size available in the starting polydisperse nanoparticles. This work clearly demonstrates that atomically precise nanocrystal molecules are achievable and that the factor of atomic shell closing contributes to their extraordinary stability compared to other sizes. Overall, this work opens up new opportunities for investigating many fundamental issues of nanocrystals, such as the formation of metallic state, and will have potential impact on condensed matter physics, nanochemistry, and catalysis as well.
引用
收藏
页码:696 / 700
页数:5
相关论文
共 50 条
  • [21] Characterisation of gold surface plasmon resonance sensor substrates
    Sexton, B. A.
    Feltis, B. N.
    Davis, T. J.
    SENSORS AND ACTUATORS A-PHYSICAL, 2008, 141 (02) : 471 - 475
  • [22] Surface Plasmon Resonance Optical Tomography with Gold Nanoparticles
    Xu, K.
    Shi, J.
    Dogan, N.
    Zhao, W.
    Yang, Y.
    MEDICAL PHYSICS, 2017, 44 (06) : 3291 - 3291
  • [23] Temperature dependence of the surface plasmon resonance in gold nanoparticles
    Yeshchenko, O. A.
    Bondarchuk, I. S.
    Gurin, V. S.
    Dmitruk, I. M.
    Kotko, A. V.
    SURFACE SCIENCE, 2013, 608 : 275 - 281
  • [24] The features of surface plasmon resonance in gold cluster films
    Maksimenko, L. S.
    Matyash, I. E.
    Rudenko, S. P.
    Serdega, B. K.
    SEMICONDUCTOR PHYSICS QUANTUM ELECTRONICS & OPTOELECTRONICS, 2009, 12 (02)
  • [25] Gold-nanoshells as surface plasmon resonance (SPR)
    Sathiyamoorthy, K.
    Kolios, Michael C.
    OPTICAL DIAGNOSTICS AND SENSING XV: TOWARD POINT-OF-CARE DIAGNOSTICS, 2015, 9332
  • [26] Investigation of dopamine immobilized on gold by surface plasmon resonance
    Yuan, Yong J.
    Xu, Zhangliang
    Chen, Yubing
    AIP ADVANCES, 2019, 9 (03)
  • [27] Multipole Surface Plasmon Resonance in Electrodeposited Gold Nanoparticles
    Mandke, Mohanrao V.
    Pathan, Habib M.
    INTERNATIONAL JOURNAL OF NANOSCIENCE, 2014, 13 (02)
  • [28] Synthesis and tuning of gold nanorods with surface plasmon resonance
    Shajari, Daryush
    Bahari, Ali
    Gill, Pooria
    Mohseni, Mojtaba
    OPTICAL MATERIALS, 2017, 64 : 376 - 383
  • [29] Surface plasmon resonance in protein covered gold nanoparticles
    Krasovskii, V. I.
    Karavanskii, V. A.
    Orlov, A. N.
    Nagovitsyn, I. A.
    Savranskii, V. V.
    Chudinova, G. K.
    ADVANCED LASER TECHNOLOGIES 2006, 2007, 6606
  • [30] Surface Plasmon Resonance in Gold Ultrathin Nanorods and Nanowires
    Takahata, Ryo
    Yamazoe, Seiji
    Koyasu, Kiichirou
    Tsukuda, Tatsuya
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (24) : 8489 - 8491