Forecasting of Global Horizontal Irradiance Using Sky Cover Indices

被引:48
|
作者
Marquez, Ricardo [1 ]
Gueorguiev, Vesselin G. [1 ]
Coimbra, Carlos F. M. [2 ]
机构
[1] Univ Calif, Sch Engn, Merced, CA 95343 USA
[2] Univ Calif San Diego, Jacobs Sch Engn, San Diego, CA 92093 USA
基金
美国国家科学基金会;
关键词
NEURAL-NETWORKS;
D O I
10.1115/1.4007497
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This work discusses the relevance of three sky cover (SC) indices for solar radiation modeling and forecasting. The three indices are global in the sense that they integrate relevant information from the whole sky and thus encode cloud cover information. However, the three indices also emphasize different specific meteorological processes and sky radiosity components. The three indices are derived from the observed cloud cover via total sky imager (TSI), via measurements of the infrared radiation (IR), and via pyranometer measurements of global horizontal irradiance (GHI). We enhance the correlations between these three indices by choosing optimal expressions that are benchmarked against the GHI SC index. The similarity of the three indices allows for a good qualitative approximation of the GHI irradiance when using any of the other two indices. An artificial neural network (ANN) algorithm is employed to improve the quantitative modeling of the GHI sky cover index, thus improving significantly the forecasting details of GHI when all three indices are used. [DOI: 10.1115/1.4007497]
引用
下载
收藏
页数:5
相关论文
共 50 条
  • [31] Measuring diffuse, direct, and global irradiance using a sky imager
    Kurtz, Benjamin
    Kleissl, Jan
    SOLAR ENERGY, 2017, 141 : 311 - 322
  • [32] Multi-Horizon Forecasting of Global Horizontal Irradiance Using Online Gaussian Process Regression: A Kernel Study
    Tolba, Hanany
    Dkhili, Nouha
    Nou, Julien
    Eynard, Julien
    Thil, Stephane
    Grieu, Stephane
    ENERGIES, 2020, 13 (16)
  • [33] Twenty-Four-Hour Ahead Probabilistic Global Horizontal Irradiance Forecasting Using Gaussian Process Regression
    Chandiwana, Edina
    Sigauke, Caston
    Bere, Alphonce
    ALGORITHMS, 2021, 14 (06)
  • [34] Improved Global Irradiance Decomposition by Sky Condition Classification from Measured Spectral Clearness Indices
    Tatsiankou, Viktar
    Hinzer, Karin
    Schriemer, Henry
    Beal, Richard
    2020 47TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2020, : 72 - 76
  • [35] Prediction of global irradiance on inclined surfaces from horizontal global irradiance
    Dpto. Física Aplicada, Universidad de Granada, Campus Fuentenueva, s/n 18071, Granada, Spain
    Energy (Oxford), 8 (689-704):
  • [36] Prediction of global irradiance on inclined surfaces from horizontal global irradiance
    Olmo, FJ
    Vida, J
    Foyo, I
    Castro-Diez, Y
    Alados-Arboledas, L
    ENERGY, 1999, 24 (08) : 689 - 704
  • [37] A Time Series Forecasting of Global Horizontal Irradiance on Geographical Data of Najran Saudi Arabia
    Alghamdi, Hisham A.
    ENERGIES, 2022, 15 (03)
  • [38] The Ultra-Short-Term Forecasting of Global Horizonal Irradiance Based on Total Sky Images
    Jiang, Junxia
    Lv, Qingquan
    Gao, Xiaoqing
    REMOTE SENSING, 2020, 12 (21) : 1 - 17
  • [39] A Comparative Study of Machine Learning-Based Methods for Global Horizontal Irradiance Forecasting
    Gbemou, Shab
    Eynard, Julien
    Thil, Stephane
    Guillot, Emmanuel
    Grieu, Stephane
    ENERGIES, 2021, 14 (11)
  • [40] Validating global horizontal irradiance estimated by McClear model under clear-sky and all-sky conditions in Pakistan
    Tahir, Zia Ul Rehman
    Amjad, Ghulam Murtaza
    Hamza, Muhammad
    Shad, Muhammad Rizwan
    Qamar, Adnan
    Blanc, Philippe
    Abbas, Sabtain
    Azhar, Muhammad
    Safyan, Muhammad
    Abdullah, Muhammad
    Atif, Muhammad
    Haider, Syed Tauqeer
    ENERGY & ENVIRONMENT, 2023, 34 (08) : 3204 - 3236