Optimal rates of convergence for estimating Toeplitz covariance matrices

被引:57
|
作者
Cai, T. Tony [1 ]
Ren, Zhao [2 ]
Zhou, Harrison H. [2 ]
机构
[1] Univ Penn, Wharton Sch, Dept Stat, Philadelphia, PA 19104 USA
[2] Yale Univ, Dept Stat, New Haven, CT 06511 USA
基金
美国国家科学基金会;
关键词
Banding; Covariance matrix; Minimax lower bound; Optimal rate of convergence; Spectral norm; Tapering; Toeplitz covariance matrix;
D O I
10.1007/s00440-012-0422-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Toeplitz covariance matrices are used in the analysis of stationary stochastic processes and a wide range of applications including radar imaging, target detection, speech recognition, and communications systems. In this paper, we consider optimal estimation of large Toeplitz covariance matrices and establish the minimax rate of convergence for two commonly used parameter spaces under the spectral norm. The properties of the tapering and banding estimators are studied in detail and are used to obtain the minimax upper bound. The results also reveal a fundamental difference between the tapering and banding estimators over certain parameter spaces. The minimax lower bound is derived through a novel construction of a more informative experiment for which the minimax lower bound is obtained through an equivalent Gaussian scale model and through a careful selection of a finite collection of least favorable parameters. In addition, optimal rate of convergence for estimating the inverse of a Toeplitz covariance matrix is also established.
引用
收藏
页码:101 / 143
页数:43
相关论文
共 50 条
  • [21] Toeplitz covariance matrices and the von neumann relative entropy
    Georgiou, TT
    [J]. CONTROL AND MODELING OF COMPLEX SYSTEMS: CYBERNETICS IN THE 21ST CENTURY: FESTSCHRIFT IN HONOR OF HIDENORI KIMURA ON THE OCCASION OF THE 60TH BIRTHDAY, 2003, : 23 - 29
  • [22] Truncated covariance matrices and Toeplitz methods in Gaussian processes
    Storkey, AJ
    [J]. NINTH INTERNATIONAL CONFERENCE ON ARTIFICIAL NEURAL NETWORKS (ICANN99), VOLS 1 AND 2, 1999, (470): : 55 - 60
  • [23] OPTIMAL ESTIMATES FOR COVARIANCE MATRICES
    SHAIKIN, ME
    [J]. AUTOMATION AND REMOTE CONTROL, 1973, 34 (01) : 53 - 60
  • [24] A note on the elementwise convergence of functions of Toeplitz matrices
    Crespo, Pedro M.
    Gutierrez-Gutierrez, Jesus
    [J]. 2007 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-7, 2007, : 1636 - +
  • [25] On the convergence of the inverses of Toeplitz matrices and its applications
    Sun, FW
    Jiang, YM
    Baras, JS
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (01) : 180 - 190
  • [26] ESTIMATING COVARIANCE MATRICES-II
    LOH, WL
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 1991, 36 (02) : 163 - 174
  • [27] Hidden Markov modeling of speech using Toeplitz covariance matrices
    Roberts, WJJ
    Ephraim, Y
    [J]. SPEECH COMMUNICATION, 2000, 31 (01) : 1 - 14
  • [28] ESTIMATION OF LARGE TOEPLITZ COVARIANCE MATRICES AND APPLICATION TO SOURCE DETECTION
    Vinogradova, Julia
    Couillet, Romain
    Hachem, Walid
    [J]. 2014 PROCEEDINGS OF THE 22ND EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2014, : 2120 - 2124
  • [29] ATOM for MLE of Toeplitz Structured Covariance Matrices for RADAR Applications
    Aubry, Augusto
    Babu, Prabhu
    De Maio, Antonio
    Jyothi, RikhabChand
    [J]. 2022 IEEE RADAR CONFERENCE (RADARCONF'22), 2022,
  • [30] Posterior convergence rates for estimating large precision matrices using graphical models
    Banerjee, Sayantan
    Ghosal, Subhashis
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2014, 8 : 2111 - 2137