RS-WebPredictor: a server for predicting CYP-mediated sites of metabolism on drug-like molecules

被引:49
|
作者
Zaretzki, Jed [1 ,2 ]
Bergeron, Charles [3 ]
Huang, Tao-wei [2 ]
Rydberg, Patrik [4 ]
Swamidass, S. Joshua [1 ]
Breneman, Curt M. [2 ]
机构
[1] Washington Univ, Sch Med, Dept Pathol & Immunol, St Louis, MO 63130 USA
[2] Rensselaer Polytech Inst, Dept Chem & Chem Biol, Troy, NY 12180 USA
[3] Albany Coll Pharm & Hlth Sci, Dept Basic & Social Sci, Albany, NY 12208 USA
[4] Univ Copenhagen, Dept Drug Design & Pharmacol, DK-2100 Copenhagen, Denmark
关键词
P450;
D O I
10.1093/bioinformatics/bts705
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Regioselectivity-WebPredictor (RS-WebPredictor) is a server that predicts isozyme-specific cytochrome P450(CYP)-mediated sites of metabolism(SOMs) on drug-like molecules. Predictions may be made for the promiscuous 2C9, 2D6 and 3A4 CYP isozymes, as well as CYPs 1A2, 2A6, 2B6, 2C8, 2C19 and 2E1. RS-WebPredictor is the first freely accessible server that predicts the regioselectivity of the last six isozymes. Server execution time is fast, taking on average 2s to encode a submitted molecule and 1s to apply a given model, allowing for high-throughput use in lead optimization projects.
引用
收藏
页码:497 / 498
页数:2
相关论文
共 40 条
  • [21] PXR-ABC drug transporters/CYP-mediated ursolic acid transport and metabolism in vitro and vivo
    Wen, Jinhua
    Zhou, Ying
    Li, Yuhua
    ARCHIV DER PHARMAZIE, 2020, 353 (09)
  • [22] Predicting Passive Permeability of Drug-like Molecules from Chemical Structure: Where Are We?
    Broccatelli, F.
    Salphati, L.
    Plise, E.
    Cheong, J.
    Gobbi, A.
    Lee, M. -L.
    Aliagas, I.
    MOLECULAR PHARMACEUTICS, 2016, 13 (12) : 4199 - 4208
  • [23] Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction
    Martignoni, Marcella
    Groothuis, Geny M. M.
    de Kanter, Ruben
    EXPERT OPINION ON DRUG METABOLISM & TOXICOLOGY, 2006, 2 (06) : 875 - 894
  • [24] Predicting Hydration Free Energies of the FreeSolv Database of Drug-like Molecules with Molecular Density Functional Theory
    Luukkonen, Sohvi
    Belloni, Luc
    Borgis, Daniel
    Levesque, Maximilien
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2020, 60 (07) : 3558 - 3565
  • [25] Predicting Autoxidation of Sulfides in Drug-like Molecules Using Quantum Mechanical/Density Functional Theory Methods
    Bose, Arnab
    Valdivia-Berroeta, Gabriel A.
    Gonnella, Nina C.
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2023, 64 (01) : 128 - 137
  • [26] RS-Predictor: A New Tool for Predicting Sites of Cytochrome P450-Mediated Metabolism Applied to CYP 3A4
    Zaretzki, Jed
    Bergeron, Charles
    Rydberg, Patrik
    Huang, Tao-wei
    Bennett, Kristin P.
    Breneman, Curt M.
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2011, 51 (07) : 1667 - 1689
  • [27] DR-Predictor: Incorporating Flexible Docking with Specialized Electronic Reactivity and Machine Learning Techniques to Predict CYP-Mediated Sites of Metabolism
    Huang, Tao-wei
    Zaretzki, Jed
    Bergeron, Charles
    Bennett, Kristin P.
    Breneman, Curt M.
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2013, 53 (12) : 3352 - 3366
  • [28] A Versatile Isocyanate-Mediated Strategy for Appending Chemical Tags onto Drug-Like Small Molecules
    Henry, Catherine C.
    Kruell, Jasmin A.
    Wilson, Robert M.
    Chang, Chia-Fu
    Woo, Christina M.
    Koehler, Angela N.
    BIOCONJUGATE CHEMISTRY, 2023, 34 (12) : 2181 - 2186
  • [29] Predicting partition coefficients of drug-like molecules in the SAMPL6 challenge with Drude polarizable force fields
    Ye Ding
    You Xu
    Cheng Qian
    Jinfeng Chen
    Jian Zhu
    Houhou Huang
    Yi Shi
    Jing Huang
    Journal of Computer-Aided Molecular Design, 2020, 34 : 421 - 435
  • [30] Predicting partition coefficients of drug-like molecules in the SAMPL6 challenge with Drude polarizable force fields
    Ding, Ye
    Xu, You
    Qian, Cheng
    Chen, Jinfeng
    Zhu, Jian
    Huang, Houhou
    Shi, Yi
    Huang, Jing
    JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2020, 34 (04) : 421 - 435