Black silicon photovoltaics

被引:3
|
作者
Fuechsel, Kevin [1 ,3 ]
Kroll, Matthias [1 ]
Kaesebier, Thomas [1 ]
Otto, Martin [2 ]
Pertsch, Thomas [1 ]
Kley, Ernst-Bernhard [1 ]
Wehrspohn, Ralf B. [2 ,4 ]
Kaiser, Norbert
Tuennermann, Andreas [1 ,3 ]
机构
[1] Univ Jena, Inst Appl Phys, Abbe Ctr Photon, Max Wien Pl 1, D-07743 Jena, Germany
[2] Martin Luther Univ Halle Wittenberg, Inst Phys, MD Grp, D-06120 Halle, Germany
[3] Fraunhofer Inst Appl Opt & Precis Engn, D-07745 Jena, Germany
[4] Fraunhofer Inst Mech Mat, D-06120 Halle, Germany
来源
关键词
Black Silicon; Crystalline Silicon; Solar Cells; SIS Solar Cells; Light Trapping; Antireflection Coating; SURFACE PASSIVATION;
D O I
10.1117/12.923748
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The challenge of future solar cell technologies is the combination of highly efficient cell concepts and low cost fabrication processes. A promising concept for high efficiencies is the usage of nanostructured silicon, so-called black silicon. Due to its unique surface geometry the optical path of the incoming light through the silicon substrate is enhanced to nearly perfect light trapping. Combined with the semiconductor-insulator-semiconductor (SIS) solar cell concept it is possible to fabricate a low cost device by using conventional sputtering technologies. Therefore, a thin insulator is coated on the nanostructured silicon surface, followed by the deposition of a transparent conductive oxide (TCO), e. g. indium tin oxide (ITO) or aluminum doped zinc oxide (AZO). In such systems the TCO induces a heterojunction, hence, high temperature diffusion processes are not necessary. The optical and geometrical properties of different nanostructured silicon surfaces will be presented. Furthermore, the influence of the used TCO materials will be discussed and the solar cell performance under AM1.5G illumination of unstructured and structured SIS devices is shown.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] REVIEW OF DEVELOPMENTS IN PRODUCTION OF SILICON FOR PHOTOVOLTAICS
    Lynch, David
    Ben, Wade
    Ji, Xiaoyang
    Jiang, Feng
    Salce, Alex
    Morey, Evan
    Jiao, Yubo
    TMS2011 SUPPLEMENTAL PROCEEDINGS, VOL 1: MATERIALS PROCESSING AND ENERGY MATERIALS, 2011, : 685 - 692
  • [22] Inkjet Technology for Crystalline Silicon Photovoltaics
    Stuewe, David
    Mager, Dario
    Biro, Daniel
    Korvink, Jan G.
    ADVANCED MATERIALS, 2015, 27 (04) : 599 - 626
  • [23] PROJECTIONS FOR AMORPHOUS-SILICON PHOTOVOLTAICS
    CARLSON, DE
    SOLAR CELLS, 1984, 12 (1-2): : 41 - 43
  • [24] CAN SILICON PHOTOVOLTAICS BE A COTTAGE INDUSTRY?
    Begay, G.
    Cordova, T.
    Modisette, D.
    Stuart, B.
    Ibrahim, Abdul Latif
    Sopian, K.
    Amin, N.
    Zaidi, Saleem H.
    PVSC: 2008 33RD IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE, VOLS 1-4, 2008, : 987 - +
  • [25] Novel Passivating Contacts for Silicon Photovoltaics
    Matsui, Takuya
    Sai, Hitoshi
    PROCEEDINGS OF AM-FPD 21: THE TWENTY-EIGHTH INTERNATIONAL WORKSHOP ON ACTIVE-MATRIX FLATPANEL DISPLAYS AND DEVICES - TFT TECHNOLOGIES AND FPD MATERIALS, 2021, : 5 - 7
  • [26] THIRD GENERATION PHOTOVOLTAICS AND SILICON NANOSTRUCTURES
    Green, Martin A.
    2008 5TH IEEE INTERNATIONAL CONFERENCE ON GROUP IV PHOTONICS, 2008, : 389 - 389
  • [27] PROSPECTS FOR AMORPHOUS-SILICON PHOTOVOLTAICS
    LUFT, W
    STAFFORD, B
    VONROEDERN, B
    DEBLASIO, R
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 1992, 26 (1-2) : 17 - 26
  • [28] Computational Design of Photovoltaics with Silicon Nanowire
    Yoo, Sungjong
    Lundgren, Christin
    Melde, Kathleen L.
    2013 USNC-URSI RADIO SCIENCE MEETING (JOINT WITH AP-S SYMPOSIUM), 2013, : 52 - 52
  • [29] Ultrafast laser processing of silicon for photovoltaics
    Franta, Benjamin
    Mazur, Eric
    Sundaram, S. K.
    INTERNATIONAL MATERIALS REVIEWS, 2018, 63 (04) : 227 - 240
  • [30] Polycyclohexysilane as a printable precursor to silicon for photovoltaics
    Laine, Richard M.
    Nielsen, Dan
    Sulaiman, Santy
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 237