Accessibility of the gravitational-wave background due to binary coalescences to second and third generation gravitational-wave detectors

被引:89
|
作者
Wu, C. [1 ]
Mandic, V. [1 ]
Regimbau, T. [2 ]
机构
[1] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA
[2] CNRS, Observ Cote Azur, Dept Artemis, F-06304 Nice, France
来源
PHYSICAL REVIEW D | 2012年 / 85卷 / 10期
基金
美国国家科学基金会;
关键词
GAMMA-RAY BURSTS; STAR-FORMATION; NEUTRON-STAR; HISTORY; MERGERS; PREDICTIONS; RATES;
D O I
10.1103/PhysRevD.85.104024
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Compact binary coalescences, such as binary neutron stars or black holes, are among the most promising candidate sources for the current and future terrestrial gravitational-wave detectors. While such sources are best searched using matched template techniques and chirp template banks, integrating chirp signals from binaries over the entire universe also leads to a gravitational-wave background (GWB). In this paper we systematically scan the parameter space for the binary coalescence GWB models, taking into account uncertainties in the star formation rate and in the delay time between the formation and coalescence of the binary, and we compare the computed GWB to the expected sensitivities of the second and third generation gravitational-wave detector networks. We find that second generation detectors are likely to detect the binary coalescence GWB, while the third generation detectors will probe most of the available parameter space. The binary coalescence GWB will, in fact, be a foreground for the third generation detectors, potentially masking the GWB background due to cosmological sources. Accessing the cosmological GWB with third generation detectors will therefore require identification and subtraction of all inspiral signals from all binaries in the detectors' frequency band.
引用
下载
收藏
页数:8
相关论文
共 50 条
  • [41] Detecting black-hole binary clustering via the second-generation gravitational-wave detectors
    Namikawa, Toshiya
    Nishizawa, Atsushi
    Taruya, Atsushi
    PHYSICAL REVIEW D, 2016, 94 (02)
  • [42] Pre-merger localization of eccentric compact binary coalescences with second-generation gravitational-wave detector networks
    Kyutoku, Koutarou
    Seto, Naoki
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2014, 441 (03) : 1934 - 1942
  • [43] Accelerated detection of the binary neutron star gravitational-wave background
    Vivanco, Francisco Hernandez
    Smith, Rory
    Thrane, Eric
    Lasky, Paul D.
    PHYSICAL REVIEW D, 2019, 100 (04)
  • [44] Detecting quasinormal modes of binary black hole mergers with second-generation gravitational-wave detectors
    Nakamura, Takashi
    Nakano, Hiroyuki
    Tanaka, Takahiro
    PHYSICAL REVIEW D, 2016, 93 (04)
  • [45] Outlook for detecting the gravitational-wave displacement and spin memory effects with current and future gravitational-wave detectors
    Grant, Alexander M.
    Nichols, David A.
    PHYSICAL REVIEW D, 2023, 107 (06)
  • [46] Laser frequency noise in next generation gravitational-wave detectors
    Cahillane, Craig
    Mansell, Georgia L.
    Sigg, Daniel
    OPTICS EXPRESS, 2021, 29 (25) : 42144 - 42161
  • [47] Quantum variational measurement in the next generation gravitational-wave detectors
    Khalili, F. Ya.
    PHYSICAL REVIEW D, 2007, 76 (10):
  • [48] Strong-lensing cosmography using third-generation gravitational-wave detectors
    Jana, Souvik
    Kapadia, Shasvath J.
    Venumadhav, Tejaswi
    More, Surhud
    Ajith, Parameswaran
    arXiv,
  • [49] Forecasting the Detection Capabilities of Third-generation Gravitational-wave Detectors Using GWFAST
    Iacovelli, Francesco
    Mancarella, Michele
    Foffa, Stefano
    Maggiore, Michele
    ASTROPHYSICAL JOURNAL, 2022, 941 (02):
  • [50] Prospects of constraining f (T) gravity with the third-generation gravitational-wave detectors
    Chen, Ran
    Wang, Yi-Ying
    Zu, Lei
    Fan, Yi-Zhong
    PHYSICAL REVIEW D, 2024, 109 (02)