Three-Dimensional Nitrogen-Doped Hierarchical Porous Carbon as an Electrode for High-Performance Supercapacitors

被引:68
|
作者
Tang, Jing [1 ,2 ]
Wang, Tao [3 ]
Salunkhe, Rahul R. [1 ]
Alshehri, Saad M. [4 ]
Malgras, Victor [1 ]
Yamauchi, Yusuke [1 ,2 ,4 ]
机构
[1] Natl Inst Mat Sci, World Premier Int WPI Res Ctr Mat Nanoarchitecton, Tsukuba, Ibaraki 3050044, Japan
[2] Waseda Univ, Fac Sci & Engn, Shinjuku Ku, Tokyo 7698555, Japan
[3] Nanjing Univ Aeronaut & Astronaut, Coll Mat Sci & Technol, Jiangsu Key Lab Mat & Technol Energy Convers, Nanjing 210016, Jiangsu, Peoples R China
[4] King Saud Univ, Coll Sci, Dept Chem, Riyadh 11451, Saudi Arabia
基金
日本学术振兴会; 日本科学技术振兴机构;
关键词
carbon; doping; electrochemistry; mesoporous materials; microporous materials; ORDERED MESOPOROUS CARBON; SOLID-STATE SUPERCAPACITORS; LITHIUM-SULFUR BATTERIES; SUPERIOR PERFORMANCE; NANOPOROUS CARBON; GRAPHITIC CARBON; HIGH CAPACITANCE; TEMPLATE; STORAGE; SPHERES;
D O I
10.1002/chem.201503590
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A facile and sustainable procedure for the synthesis of nitrogen doped hierarchical porous carbons with a three-dimensional interconnected framework (NHPC-3D) was developed. The strategy, based on a colloidal crystal-templating method, utilizes nitrogenous dopamine as the precursor due to its unique properties, including self-polymerization under mild alkaline conditions, coating onto various surfaces, a high carbonization yield, and well-preserved nitrogen doping after heat treatment. The obtained NHPC-3D possesses a high surface area of 1056 m(2)g(-1), a large pore volume of 2.56 cm(3) g(-1), and a high nitrogen content of 8.2 wt%. The NHPC-3D is implemented as the electrode material of a supercapacitor and exhibits a specific capacitance as high as 252 F g(-1) at a current density of 2 A g(-1). The device also shows a high capacitance retention of 75.7% at a higher current density of 20 A g(-1) in aqueous electrolyte due to a sufficient surface area for charge accommodation, reversible pseudocapacitance, and minimized ion-transport resistance, as a result of the advantageous interconnected hierarchical porous texture. These results showcase NHPC-3D as a promising candidate for electrode materials in super capacitors.
引用
收藏
页码:17293 / 17298
页数:6
相关论文
共 50 条
  • [31] Synthesis of nitrogen-doped hierarchical porous carbon for supercapacitors
    Chen, Aibing
    Yu, Yifeng
    Xing, Tingting
    Wang, Rujie
    Li, Yonglei
    Li, Yuetong
    MATERIALS LETTERS, 2015, 157 : 30 - 33
  • [32] Nitrogen-Doped Hierarchical Porous Carbon Framework Derived from Waste Pig Nails for High-Performance Supercapacitors
    Zhou, Yibei
    Ren, Juan
    Xia, Li
    Wu, Huali
    Xie, Fengyu
    Zheng, Qiaoji
    Xu, Chenggang
    Lin, Dunmin
    CHEMELECTROCHEM, 2017, 4 (12): : 3181 - 3187
  • [33] A facile template approach to nitrogen-doped hierarchical porous carbon nanospheres from polydopamine for high-performance supercapacitors
    Xiong, Shuqiang
    Fan, Jinchen
    Wang, Yan
    Zhu, Jing
    Yu, Junrong
    Hu, Zuming
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (34) : 18242 - 18252
  • [34] Hierarchical nitrogen-doped porous carbon/carbon nanotube composites for high-performance supercapacitor
    Zhou, Yibei
    Song, Zhicui
    Hu, Qiang
    Zheng, Qiaoji
    Jiang, Na
    Xie, Fengyu
    Jie, Wenjing
    Xu, Chenggang
    Lin, Dunmin
    SUPERLATTICES AND MICROSTRUCTURES, 2019, 130 : 50 - 60
  • [35] Nitrogen-doped hierarchical porous carbon aerogel for high-performance capacitive deionization
    Liu, Xiaojun
    Liu, Hui
    Mi, Mengjuan
    Kong, Weiqing
    Ge, Yongjie
    Hu, Jiawen
    SEPARATION AND PURIFICATION TECHNOLOGY, 2019, 224 : 44 - 50
  • [36] Nitrogen-Doped Porous Carbon as Electrode Material for High-Performance Supercapacitors by a Combined Template-Activation Method
    Wu, Shouqiang
    Li, Yuchao
    Tao, Xuquan
    Wei, Denghu
    Wang, Huaisheng
    Wang, Jie
    Xu, Leilei
    Zhang, Bing
    JOURNAL OF ELECTRONIC MATERIALS, 2019, 48 (12) : 7888 - 7896
  • [37] Nitrogen-Doped Porous Carbon as Electrode Material for High-Performance Supercapacitors by a Combined Template-Activation Method
    Shouqiang Wu
    Yuchao Li
    Xuquan Tao
    Denghu Wei
    Huaisheng Wang
    Jie Wang
    Leilei Xu
    Bing Zhang
    Journal of Electronic Materials, 2019, 48 : 7888 - 7896
  • [38] Synthesis of nitrogen-doped hierarchical porous carbons from peanut shell as a promising electrode material for high-performance supercapacitors
    Jiang, Xiaochen
    Guo, Feiqiang
    Jia, Xiaopeng
    Zhan, Yinbo
    Zhou, Huiming
    Qian, Lin
    JOURNAL OF ENERGY STORAGE, 2020, 30
  • [39] Facile synthesis of three-dimensional porous carbon for high-performance supercapacitors
    Zhao, Weidong
    Zhu, Yun
    Zhang, Litong
    Xie, Yunlong
    Ye, Xiangrong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 787 : 1 - 8
  • [40] Cellulose-derived nitrogen-doped hierarchically porous carbon for high-performance supercapacitors
    Peng Song
    XiaoPing Shen
    XiaoMei He
    KaiHui Feng
    LiRong Kong
    ZhenYuan Ji
    LinZhi Zhai
    GuoXing Zhu
    DongYang Zhang
    Cellulose, 2019, 26 : 1195 - 1208