k-Shredders in k-Connected Graphs

被引:3
|
作者
Egawa, Yoshimi [1 ]
机构
[1] Tokyo Univ Sci, Dept Math Informat Sci, Shinjuku Ku, Tokyo 1628601, Japan
关键词
graph; connectivity; shredder; upper bound;
D O I
10.1002/jgt.20336
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a graph G, a subset S of V(G) is called a shredder if G - S consists of three or more components. We show that if k >= 4 and G is a k-connected graph, then the number of shredders of cardinality k of G is less than 2 vertical bar V(G)vertical bar/3 (we show a better bound for k = 4). (C) 2008 Wiley Periodicals, Inc. J Graph Theory 59: 239-259, 2008
引用
下载
收藏
页码:239 / 259
页数:21
相关论文
共 50 条
  • [21] A result on quasi k-connected graphs
    YANG Ying-qiu
    Applied Mathematics:A Journal of Chinese Universities, 2015, (02) : 245 - 252
  • [22] Contractible cliques in k-connected graphs
    Huang, Xiaolong
    Jin, Zemin
    Yu, Xingxing
    Zhang, Xiaoyan
    GRAPHS AND COMBINATORICS, 2006, 22 (03) : 361 - 370
  • [23] A note on k-connected rayless graphs
    Halin, R
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1998, 72 (02) : 257 - 260
  • [24] A result on quasi k-connected graphs
    Yang Ying-qiu
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2015, 30 (02) : 245 - 252
  • [25] k-Connected Graphs Without K4-
    Li, Xiang-Jun
    ARS COMBINATORIA, 2015, 119 : 353 - 362
  • [26] Contractible Cliques in k-Connected Graphs
    Xiaolong Huang
    Zemin Jin
    Xingxing Yu
    Xiaoyan Zhang
    Graphs and Combinatorics, 2006, 22 : 361 - 370
  • [27] Algebraic connectivity of k-connected graphs
    Kirkland, Steve
    Rocha, Israel
    Trevisan, Vilmar
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2015, 65 (01) : 219 - 236
  • [28] Intersections of Cycles in k-Connected Graphs
    Chen, Jessica
    Chen, Le
    Liu, Derrick
    GRAPHS AND COMBINATORICS, 2015, 31 (04) : 897 - 914
  • [29] ON THE K-DIAMETER OF K-REGULAR K-CONNECTED GRAPHS
    HSU, DF
    LUCZAK, T
    DISCRETE MATHEMATICS, 1994, 133 (1-3) : 291 - 296
  • [30] ON THE CYCLABILITY OF K-CONNECTED (K+1)-REGULAR GRAPHS
    HOLTON, DA
    PLUMMER, MD
    ARS COMBINATORIA, 1987, 23 : 37 - 55