Pre-layout physical connectivity prediction with application in clustering-based placement

被引:0
|
作者
Liu, QH [1 ]
Marek-Sadowska, M [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA
来源
2005 IEEE INTERNATIONAL CONFERENCE ON COMPUTER DESIGN: VLSI IN COMPUTERS & PROCESSORS, PROCEEDINGS | 2005年
关键词
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we introduce a structural metric, logic contraction, for pre-layout physical connectivity prediction. For a given set of nodes forming a cluster in a netlist, we can predict their proximity in the final layout based on the logic contraction value of the cluster. We demonstrate a very good correlation of our pre-layout measure with the post-layout physical distances between those nodes. We show an application of the logic contraction to circuit clustering. We compare our Seed-Growth clustering algorithm with the existing efficient clustering techniques. Experimental results demonstrate the effectiveness of our new clustering method.
引用
收藏
页码:31 / 37
页数:7
相关论文
共 50 条
  • [41] Towards Distribution Clustering-Based Deep LSTM Models for RUL Prediction
    Sayah, Mohamed
    Guebli, Djillali
    Zerhouni, Noureddine
    Al Masry, Zeina
    2020 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-BESANCON 2020), 2020, : 253 - 256
  • [42] A comprehensive comparative study of clustering-based unsupervised defect prediction models
    Xu, Zhou
    Li, Li
    Yan, Meng
    Liu, Jin
    Luo, Xiapu
    Grundy, John
    Zhang, Yifeng
    Zhang, Xiaohong
    Journal of Systems and Software, 2021, 172
  • [43] Adaptive clustering-based hierarchical layout optimisation for large-scale integrated energy systems
    Guo, Hui
    Shi, Tianling
    Wang, Fei
    Zhang, Lijun
    Lin, Zhengyu
    IET RENEWABLE POWER GENERATION, 2020, 14 (17) : 3336 - 3345
  • [44] Filament enhancement by non-linear volumetric filtering using clustering-based connectivity
    Ouzounis, Georgios K.
    Wilkinson, Michael H. F.
    ADVANCES IN MACHINE VISION, IMAGE PROCESSING, AND PATTERN ANALYSIS, 2006, 4153 : 317 - 327
  • [45] Graphical Approach for V2V Connectivity Enhancement in Clustering-Based VANET
    Singh, Rohit
    Saluja, Deepak
    Kumar, Suman
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2021, 10 (06) : 1217 - 1221
  • [46] Markov Clustering-Based Content Placement in Roadside-Unit Caching With Deadline Constraint
    Wang, Yu-Ting
    Lin, Ting-Yu
    Sou, Sok-Ian
    Chen, Lo-An
    Tsai, Meng-Hsun
    Chen, Yean-Ru
    Tu, Chia-Heng
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (09) : 11881 - 11892
  • [47] CRAMP: Clustering-based RANs association and MEC placement for delay-sensitive applications
    Dash, Saumyaranjan
    Khan, Asif Uddin
    Kar, Binayak
    Swain, Santosh Kumar
    Kuswiradyo, Primatar
    Tadele, Seifu Birhanu
    Wakgra, Frezer Guteta
    JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2024, 227
  • [48] Clustering-based Sensor Placement for Thermal Fault Diagnostics in Large-Format Batteries
    Sattarzadeh, Sara
    Roy, Tanushree
    Dey, Satadru
    IFAC PAPERSONLINE, 2021, 54 (20): : 381 - 386
  • [49] ClubCF: A Clustering-Based Collaborative Filtering Approach for Big Data Application
    Hu, Rong
    Dou, Wanchun
    Liu, Jianxun
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, 2014, 2 (03) : 302 - 313
  • [50] A clustering-based constructive induction method and its application to Rheumatoid arthritis
    Sanandrés, JA
    Maojo, V
    Crespo, J
    Gómez, A
    ARTIFICIAL INTELLIGENCE IN MEDICINE, PROCEEDINGS, 2001, 2101 : 59 - 62