Accounting for Uncertainties of the TRMM Satellite Estimates

被引:68
|
作者
AghaKouchak, Amir [1 ]
Nasrollahi, Nasrin [1 ]
Habib, Emad [1 ]
机构
[1] Univ Louisiana Lafayette, Dept Civil Engn, Lafayette, LA 70504 USA
关键词
stochastic simulation; TRMM data; random error; rainfall ensemble; uncertainty analysis; satellite estimates; bootstrap technique; SPATIAL VARIABILITY; PRECIPITATION ESTIMATION; RAINFALL VARIABILITY; GLOBAL PRECIPITATION; CATCHMENT RESPONSE; RUNOFF; TIME; RADAR; SPACE; SENSITIVITY;
D O I
10.3390/rs1030606
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Recent advances in the field of remote sensing have led to an increase in available rainfall data on a regional and global scale. Several NASA sponsored satellite missions provide valuable precipitation data. However, the advantages of the data are limited by complications related to the indirect nature of satellite estimates. This study intends to develop a stochastic model for uncertainty analysis of satellite rainfall fields through simulating error fields and imposing them over satellite estimates. In order to examine reliability and performance of the presented model, ensembles of satellite estimates are simulated for a large area across the North and South Carolina. The generated ensembles are then compared with original satellite estimates with respect to statistical properties and spatial dependencies. The results show that the model can be used to describe the uncertainties associated to TRMM multi-satellite precipitation estimates. The presented model is validated using random sub-samples of the observations based on the bootstrap technique. The results indicate that the model performs reasonably well with different numbers of available rain gauges.
引用
收藏
页码:606 / 619
页数:14
相关论文
共 50 条
  • [21] Independent estimates of marine population connectivity are more concordant when accounting for uncertainties in larval origins
    R. Nolasco
    I. Gomes
    L. Peteiro
    R. Albuquerque
    T. Luna
    J. Dubert
    S. E. Swearer
    H. Queiroga
    Scientific Reports, 8
  • [22] Uncertainties in transpiration estimates
    Coenders-Gerrits, A. M. J.
    van der Ent, R. J.
    Bogaard, T. A.
    Wang-Erlandsson, L.
    Hrachowitz, M.
    Savenije, H. H. G.
    NATURE, 2014, 506 (7487) : E1 - E2
  • [23] Uncertainties in transpiration estimates
    A. M. J. Coenders-Gerrits
    R. J. van der Ent
    T. A. Bogaard
    L. Wang-Erlandsson
    M. Hrachowitz
    H. H. G. Savenije
    Nature, 2014, 506 : E1 - E2
  • [24] Flying the TRMM Satellite in a general circulation model
    Lin, X
    Fowler, LD
    Randall, DA
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2002, 107 (D16)
  • [25] Addressing uncertainties in water accounting
    Lowe, L.
    Etchells, T.
    Malano, H.
    Nathan, R.
    Potter, B.
    18TH WORLD IMACS CONGRESS AND MODSIM09 INTERNATIONAL CONGRESS ON MODELLING AND SIMULATION: INTERFACING MODELLING AND SIMULATION WITH MATHEMATICAL AND COMPUTATIONAL SCIENCES, 2009, : 3626 - 3632
  • [26] From TRMM to GPM, how do improvements of post/near-real-time satellite precipitation estimates manifest?
    Shen, Zhehui
    Yong, Bin
    Yi, Lu
    Wu, Hao
    Xu, Hui
    ATMOSPHERIC RESEARCH, 2022, 268
  • [27] Error-Component Analysis of TRMM-Based Multi-Satellite Precipitation Estimates over Mainland China
    Yong, Bin
    Chen, Bo
    Tian, Yudong
    Yu, Zhongbo
    Hong, Yang
    REMOTE SENSING, 2016, 8 (05):
  • [28] Validation of Satellite Estimates (Tropical Rainfall Measuring Mission, TRMM) for Rainfall Variability over the Pacific Slope and Coast of Ecuador
    Erazo, Bolivar
    Bourrel, Luc
    Frappart, Frederic
    Chimborazo, Oscar
    Labat, David
    Dominguez-Granda, Luis
    Matamoros, David
    Mejia, Raul
    WATER, 2018, 10 (02):
  • [29] Rainfall estimation using TRMM satellite data
    Nirala, ML
    Cracknell, AP
    IGARSS '98 - 1998 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, PROCEEDINGS VOLS 1-5: SENSING AND MANAGING THE ENVIRONMENT, 1998, : 135 - 137
  • [30] Exploiting satellite measurements to explore uncertainties in UK bottom-up NOx emission estimates
    Pope, Richard J.
    Kelly, Rebecca
    Marais, Eloise A.
    Graham, Ailish M.
    Wilson, Chris
    Harrison, Jeremy J.
    Moniz, Savio J. A.
    Ghalaieny, Mohamed
    Arnold, Steve R.
    Chipperfield, Martyn P.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2022, 22 (07) : 4323 - 4338