Fluorescence resonance energy transfer between carbon quantum dots and silver nanoparticles: Application to mercuric ion sensing

被引:34
|
作者
Abdolmohammad-Zadeh, Hossein [1 ]
Azari, Zhila [1 ]
Pourbasheer, Eslam [2 ]
机构
[1] Azarbaijan Shahid Madani Univ, Fac Sci, Dept Chem, Analyt Spect Res Lab, 35 Km Tabriz Marageh Rd,POB 53714-161, Tabriz 5375171379, Iran
[2] Univ Mohaghegh Ardabili, Dept Chem, Ardebil, Iran
关键词
Mercuric ion; Carbon quantum dots; Silver nanoparticles; Fluorescence resonance energy transfer; Redox reaction; Fluorescent sensor; SELECTIVE DETECTION; FRET; SENSOR; PROBE; SYSTEM; WATER; PH;
D O I
10.1016/j.saa.2020.118924
中图分类号
O433 [光谱学];
学科分类号
0703 ; 070302 ;
摘要
Fluorescence resonance energy transfer (FRET) process as a practical and competitive sensing strategy was utilized between carbon quantum dots (C-dots) and silver nanoparticles (Ag NPs) for the determination of mercuric ions. The novel synthesized C-dots with the quantum yield of 84% acted as the donor and Ag NPs operated as the acceptor in the FRET process leading to the fluorescence quenching of the C-dots. In the presence of Hg(II) ions, the FRET-quenched fluorescence emission of the C-dots-Ag NPs system was recovered owing to oxidation of Ag NPs by Hg(II) ions, so that the turn-on fluorescence intensity was directly proportional to the Hg(II) ion concentration. Accordingly, combination of the FRET system with the redox reaction was firstly utilized to construct an innovative turn-off/on fluorescent sensor for the quantification of Hg(II) ion. The calibration plot was linear in the concentration range 0.5-500.0 nmol L-1 with a determination coefficient (R-2) of 0.9965. The limit of detection and limit of quantification were 0.10 and 0.35 nmol L-1, respectively, according to the IUPAC definition. The method was applied for the determination of Hg(II) ion in lake water, wastewater and tea samples, and the proper relative recoveries (98.0-104.0%) were obtained for the spiked samples. The method has high potential to diagnose trace values of mercuric ions in real samples with high sensitivity and repeatability. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] An immunosensor designed for polybrominated biphenyl detection based on fluorescence resonance energy transfer (FRET) between carbon dots and gold nanoparticles
    Bu, Dan
    Zhuang, Huisheng
    Yang, Guangxin
    Ping, Xianxin
    SENSORS AND ACTUATORS B-CHEMICAL, 2014, 195 : 540 - 548
  • [42] Synthesis of Lipid-Quantum Dots and the Fluorescence Resonance Energy Transfer of Quantum Dots in Lipid Bilayer
    Ye, Chao
    Li, Chengui
    Wang, Yunqing
    Yu, Jie
    Zhou, Fang
    Hu, Yuzhu
    NEW MATERIALS, APPLICATIONS AND PROCESSES, PTS 1-3, 2012, 399-401 : 646 - 649
  • [43] Enhancing carbon dots fluorescence via plasmonic resonance energy transfer
    Sciortino, A.
    Panniello, A.
    Minervini, G.
    Mauro, N.
    Giammona, G.
    Buscarino, G.
    Cannas, M.
    Striccoli, M.
    Messina, F.
    MATERIALS RESEARCH BULLETIN, 2022, 149
  • [44] Enhanced Forster resonance energy transfer between the CdTe quantum dots in proximity to gold nanoparticles
    Komarala, Vamsi K.
    Bradley, A. Louise
    Rakovich, Yury P.
    Byrne, Stephen J.
    Gun'ko, Yurii K.
    Rogach, Andrey L.
    PLASMONICS: METALLIC NANOSTRUCTURES AND THEIR OPTICAL PROPERTIES V, 2007, 6641
  • [45] Occurrence of Forster Resonance Energy Transfer between Quantum Dots and Gold Nanoparticles in the Presence of a Biomolecule
    Mandal, Gopa
    Bardhan, Munmun
    Ganguly, Tapan
    JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (43): : 20840 - 20848
  • [46] Detection of influenza A virus based on fluorescence resonance energy transfer from quantum dots to carbon nanotubes
    Tian, Junping
    Zhao, Huimin
    Liu, Meng
    Chen, Yaqiong
    Quan, Xie
    ANALYTICA CHIMICA ACTA, 2012, 723 : 83 - 87
  • [47] Protein Quantification Using Resonance Energy Transfer between Donor Nanoparticles and Acceptor Quantum Dots
    Harma, Harri
    Pihlasalo, Sari
    Cywinski, Piotr J.
    Mikkonen, Piia
    Hammann, Tommy
    Loehmannsroeben, Hans-Gerd
    Hanninen, Pekka
    ANALYTICAL CHEMISTRY, 2013, 85 (05) : 2921 - 2926
  • [48] Immobilization of gold nanoparticles with rhodamine to enhance the fluorescence resonance energy transfer between quantum dots and rhodamine; new method for downstream sensing of infectious bursal disease virus
    Sabzehparvar, Fatemeh
    Cherati, Tavoos Rahmani
    Mohsenifar, Afshin
    Shojaei, Taha Roodbar
    Tabatabaei, Meisam
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2019, 212 : 173 - 179
  • [49] Nonradiative Resonance Energy Transfer between Semiconductor Quantum Dots
    Samosvat, D. M.
    Chikalova-Luzina, O. P.
    Zegrya, G. G.
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2015, 121 (01) : 76 - 95
  • [50] Nonradiative resonance energy transfer between semiconductor quantum dots
    D. M. Samosvat
    O. P. Chikalova-Luzina
    G. G. Zegrya
    Journal of Experimental and Theoretical Physics, 2015, 121 : 76 - 95