CNT-Decorated Na3V2(PO4)3 Microspheres as a High-Rate and Cycle-Stable Cathode Material for Sodium Ion Batteries

被引:108
|
作者
Chen, Hezhang [1 ]
Zhang, Bao [1 ]
Wang, Xu [1 ]
Dong, Pengyuan [1 ]
Tong, Hui [1 ]
Zheng, Jun-chao [1 ]
Yu, Wanjing [1 ]
Zhang, Jiafeng [1 ]
机构
[1] Cent S Univ, Sch Met & Environm, Changsha 410083, Hunan, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Na3V2(PO4)(3); microspheres; carbon nanotubes; amorphous carbon; sodium ion batteries; IMPROVED ELECTROCHEMICAL PERFORMANCE; CARBON MATRIX; GAS-PHASE; OXIDATION; FRAMEWORK; QSAR; NI;
D O I
10.1021/acsami.7b16402
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A novel cathode material, carbon nanotube (CNT)-decorated Na3V2(PO4)(3) (NVP) microspheres, was designed and synthesized via spray-drying and carbothermal reduction methods. The microspheres were covered and embedded by CNTs, the surfaces of which were also covered by amorphous carbon layers. Thus, a carbon network composed of CNTs and amorphous carbon layers formed in the materials. The polarization of a 10 wt % CNT-decorated NVP (NVP/C10) electrode was much less compared with that of the electrode with pristine NVP without CNTs. The capacity of the NVP/C10 electrode only decreased from 103.2 to 76.2 mAh g(-1) when the current rates increased from 0.2 to 60 C. Even when cycled at a rate of 20 C, the initial discharge capacity of the NVP/C10 electrode was as high as 91.2 mAh g(-1), and the discharge capacity was 76.9 mAh g(-1) after 150 cycles. The charge-transfer resistance and ohmic resistance became smaller because of CNT decorating. Meanwhile, the addition of CNTs can tune the size of the NVP particles and increase the contact area between NVP and the electrolyte. Consequently, the resulted NVP had a larger sodium ion diffusion coefficient than that of the pristine NVP.
引用
收藏
页码:3590 / 3595
页数:6
相关论文
共 50 条
  • [41] 3D CNT decorated Na3V2(PO4)3/C microsphere with outstanding sodium storage performance for Na-ion batteries
    Du, Guangqian
    Wang, Shijie
    Zheng, Meng
    SOLID STATE IONICS, 2018, 317 : 229 - 233
  • [42] li Na3V2(PO4)3-A Highly Promising Anode and Cathode Material for Sodium-Ion Batteries
    Akcay, Tolga
    Haeringer, Marcel
    Pfeifer, Kristina
    Anhalt, Jens
    Binder, Joachim R.
    Dsoke, Sonia
    Kramer, Dominik
    Moenig, Reiner
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (11) : 12688 - 12695
  • [43] Effect of aluminum doping on carbon loaded Na3V2(PO4)3 as cathode material for sodium-ion batteries
    Aragon, M. J.
    Lavela, P.
    Alcantara, R.
    Tirado, J. L.
    ELECTROCHIMICA ACTA, 2015, 180 : 824 - 830
  • [44] Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries
    Jian, Zelang
    Zhao, Liang
    Pan, Huilin
    Hu, Yong-Sheng
    Li, Hong
    Chen, Wen
    Chen, Liquan
    ELECTROCHEMISTRY COMMUNICATIONS, 2012, 14 (01) : 86 - 89
  • [45] Fabrication and characterization of conductive polyaniline-decorated Na3V2(PO4)3 cathode for Na-ion batteries
    Zuo, Yanmei
    Kang, Xiaomeng
    Du, Bin
    Zuo, Zhifang
    SOLID STATE IONICS, 2023, 400
  • [46] Hierarchically carbon-coated Na3V2(PO4)3 nanoflakes for high-rate capability and ultralong cycle-life sodium ion batteries
    Zhao, Yilin
    Cao, Xinxin
    Fang, Guozhao
    Wang, Yaping
    Yang, Hulin
    Liang, Shuquan
    Pan, Anqiang
    Cao, Guozhong
    CHEMICAL ENGINEERING JOURNAL, 2018, 339 : 162 - 169
  • [47] CNT-Decorated Na4Mn2Co(PO4)2P2O7 Microspheres as a Novel High-Voltage Cathode Material for Sodium-Ion Batteries
    Tang, Linbin
    Liu, Xiaohao
    Li, Zhi
    Pu, Xiaoming
    Zhang, Jianhua
    Xu, Qunjie
    Liu, Haimei
    Wang, Yong-Gang
    Xia, Yongyao
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (31) : 27813 - 27822
  • [49] Electrospun Na3V2(PO4)3/C nanofibers as self-standing cathode material for high performance sodium ion batteries
    Luo, Longlong
    Cheng, Bin
    Chen, Yuxin
    Chen, Shaojun
    Liu, Guanlun
    Zhuo, Haitao
    MATERIALS RESEARCH EXPRESS, 2020, 7 (02)
  • [50] Modification of the morphology of Na3V2(PO4)2F3 as cathode material for sodium-ion batteries by polyvinylpyrrolidone
    Zhu, Weikai
    Liang, Kang
    Ren, Yurong
    CERAMICS INTERNATIONAL, 2021, 47 (12) : 17192 - 17201