Advances in biotechnology and genomics of switchgrass

被引:32
|
作者
Nageswara-Rao, Madhugiri [1 ,2 ]
Soneji, Jaya R. [2 ]
Kwit, Charles [1 ]
Stewart, C. Neal, Jr. [1 ,3 ]
机构
[1] Univ Tennessee, Dept Plant Sci, 2431 Joe Johnson Dr, Knoxville, TN 37996 USA
[2] Polk State Coll, Dept Biol Sci, Winter Haven, FL 33881 USA
[3] Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN USA
关键词
Biofuels; Expressed sequence tags; Genetic engineering; Genome sequencing; Lignin biosynthesis; microRNAs; Molecular markers; PANICUM-VIRGATUM-L; TRANSIENT GENE-EXPRESSION; PLANT-REGENERATION; HERBICIDE RESISTANCE; POLYUBIQUITIN GENES; BIOMASS PRODUCTION; PROMOTER ACTIVITY; SEQUENCE TAGS; DIVERSITY; ETHANOL;
D O I
10.1186/1754-6834-6-77
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Switchgrass (Panicum virgatum L.) is a C-4 perennial warm season grass indigenous to the North American tallgrass prairie. A number of its natural and agronomic traits, including adaptation to a wide geographical distribution, low nutrient requirements and production costs, high water use efficiency, high biomass potential, ease of harvesting, and potential for carbon storage, make it an attractive dedicated biomass crop for biofuel production. We believe that genetic improvements using biotechnology will be important to realize the potential of the biomass and biofuel-related uses of switchgrass. Tissue culture techniques aimed at rapid propagation of switchgrass and genetic transformation protocols have been developed. Rapid progress in genome sequencing and bioinformatics has provided efficient strategies to identify, tag, clone and manipulate many economically-important genes, including those related to higher biomass, saccharification efficiency, and lignin biosynthesis. Application of the best genetic tools should render improved switchgrass that will be more economically and environmentally sustainable as a lignocellulosic bioenergy feedstock.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Biotechnology: advances and impact
    Bulfield, G
    [J]. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, 2000, 80 (14) : 2077 - 2080
  • [32] Advances in biotechnology and safety
    Shah, Nagendra P.
    Tsakalidou, Effie
    Yang, Zhennai
    Chen, Wei
    [J]. INTERNATIONAL DAIRY JOURNAL, 2014, 34 (02) : 229 - 229
  • [33] Advances in pretargeting biotechnology
    Goodwin, DA
    Meares, CF
    [J]. BIOTECHNOLOGY ADVANCES, 2001, 19 (06) : 435 - 450
  • [34] Advances in macrofungal biotechnology
    Mitchell, David Alexander
    Steiner, Walter
    Amazonas, Maria Angela Lopes de Almeida
    [J]. FOOD TECHNOLOGY AND BIOTECHNOLOGY, 2007, 45 (03) : 219 - 220
  • [35] Progress in genomics, metabolism and biotechnology of bifidobacteria
    Cronin, Michelle
    Ventura, Marco
    Fitzgerald, Gerald F.
    van Sinderen, Douwe
    [J]. INTERNATIONAL JOURNAL OF FOOD MICROBIOLOGY, 2011, 149 (01) : 4 - 18
  • [36] Future challenges of plant biotechnology and genomics
    Abumhadi, Nabil Mosa
    Atanassov, Atanas Ivan
    [J]. ROMANIAN BIOTECHNOLOGICAL LETTERS, 2010, 15 (02): : 127 - 141
  • [37] Applications of biotechnology and genomics in potato improvement
    Barrell, Philippa J.
    Meiyalaghan, Sathiyamoorthy
    Jacobs, Jeanne M. E.
    Conner, Anthony J.
    [J]. PLANT BIOTECHNOLOGY JOURNAL, 2013, 11 (08) : 907 - 920
  • [38] Microbial biotechnology: diversity,genomics and metagenomics
    S. Ayyappan
    [J]. Indian Journal of Microbiology, 2009, 49 : 103 - 104
  • [39] A teaching model for biotechnology and genomics education
    Kirkpatrick, G
    Orvis, K
    Pittendrigh, B
    [J]. JOURNAL OF BIOLOGICAL EDUCATION, 2002, 37 (01) : 31 - 35
  • [40] Microbial biotechnology: diversity,genomics and metagenomics
    Ayyappan, S.
    [J]. INDIAN JOURNAL OF MICROBIOLOGY, 2009, 49 (01) : 103 - 104