System Identification Using Self-Adaptive Group Particle Swarm Optimization

被引:0
|
作者
Lin, Chun-Hui [1 ]
Lee, Chin-Ling [2 ]
Lin, Cheng-Jian [3 ]
机构
[1] Nation Cheng Kung Univ, Dept Comp Sci & Informat Engn, Tainan 701, Taiwan
[2] Natl Taichung Univ Sci & Technol, Dept Int Business, Taichung 404, Taiwan
[3] Natl Chin Yi Univ Technol, Dept Comp Sci & Informat Engn, Taichung 411, Taiwan
关键词
Fuzzy cerebellar model articulation controller; entropy; Nelder-Mead; particle swarm optimization; prediction; identification;
D O I
10.1109/IS3C.2018.00085
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This article presents an efficient TSK-type recurrent fuzzy cerebellar model articulation controller (T-RFCMAC) model based on dynamic-group-based hybrid evolutionary algorithm (DGHEA) for solving identification and prediction problems.
引用
收藏
页码:310 / 313
页数:4
相关论文
共 50 条
  • [31] An Improved Self-Adaptive Particle Swarm Optimization Algorithm with Simulated Annealing
    Jun, Shu
    Jian, Li
    [J]. 2009 THIRD INTERNATIONAL SYMPOSIUM ON INTELLIGENT INFORMATION TECHNOLOGY APPLICATION, VOL 3, PROCEEDINGS, 2009, : 396 - +
  • [32] A Self-Adaptive Topologically Connected-Based Particle Swarm Optimization
    Lim, Wei Hong
    Isa, Nor Ashidi Mat
    Tiang, Sew Sun
    Tan, Teng Hwang
    Natarajan, Elango
    Wong, Chin Hong
    Tang, Jing Rui
    [J]. IEEE ACCESS, 2018, 6 : 65347 - 65366
  • [33] A novel particle swarm optimization algorithm with self-adaptive inertia weight
    Zhang Xueliang
    Wen Shuhua
    Li Hainan
    Liu Shuyang
    Wu Meixian
    Wang Jiaying
    [J]. PROCEEDINGS OF THE 24TH CHINESE CONTROL CONFERENCE, VOLS 1 AND 2, 2005, : 1373 - 1376
  • [34] Convergence Analysis of Self-adaptive Immune Particle Swarm Optimization Algorithm
    Jiang, Jingqing
    Song, Chuyi
    Ping, Huan
    Zhang, Chenggang
    [J]. ADVANCES IN NEURAL NETWORKS - ISNN 2018, 2018, 10878 : 157 - 164
  • [35] Particle swarm optimization algorithm of self-adaptive parameter based on ant system and its application
    Yang, Fan
    Hu, Chun-Ping
    Yan, Xue-Feng
    [J]. Kongzhi Lilun Yu Yingyong/Control Theory and Applications, 2010, 27 (11): : 1479 - 1488
  • [36] An integrated particle swarm optimization approach hybridizing a new self-adaptive particle swarm optimization with a modified differential evolution
    Tang, Biwei
    Xiang, Kui
    Pang, Muye
    [J]. NEURAL COMPUTING & APPLICATIONS, 2020, 32 (09): : 4849 - 4883
  • [37] An integrated particle swarm optimization approach hybridizing a new self-adaptive particle swarm optimization with a modified differential evolution
    Biwei Tang
    Kui Xiang
    Muye Pang
    [J]. Neural Computing and Applications, 2020, 32 : 4849 - 4883
  • [38] Self-adaptive chaotic local search particle swarm optimization for propylene explosion region parameter identification
    Liu, Shuting
    Gao, Xianwen
    He, Hangfeng
    Zhang, Shumei
    [J]. PROCEEDINGS OF THE 2019 31ST CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2019), 2019, : 1702 - 1707
  • [39] Multi-robot path planning using an improved self-adaptive particle swarm optimization
    Tang, Biwei
    Kui Xiang
    Pang, Muye
    Zhu Zhanxia
    [J]. INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS, 2020, 17 (05):
  • [40] Comparison of Self-Adaptive Particle Swarm Optimizers
    van Zyl, E. T.
    Engelbrecht, A. P.
    [J]. 2014 IEEE SYMPOSIUM ON SWARM INTELLIGENCE (SIS), 2014, : 48 - 56