Boundary value problems for the Helmholtz equation in an octant

被引:3
|
作者
Speck, Frank-Olme [1 ]
Stephan, Ernst Peter [2 ]
机构
[1] Univ Tecn Lisboa, Inst Super Tecn, Dept Matemat, P-1049001 Lisbon, Portugal
[2] Leibniz Univ Hannover, Inst Angew Math, D-30167 Hannover, Germany
关键词
diffraction theory; Helmholtz equation; boundary value problem; pseudodifferential equation; convolution type operator with symmetry; factorization; invertibility; quarter-plane problem;
D O I
10.1007/s00020-008-1628-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a class of boundary value problems for the three-dimensional Helmholtz equation that appears in diffraction theory. On the three faces of the octant, which are quadrants, we admit first order boundary conditions with constant coefficients, linear combinations of Dirichlet, Neumann, impedance and/or oblique derivative type. A new variety of surface potentials yields 3 x 3 boundary pseudodifferential operators on the quarter-plane R-++(2) that are equivalent to the operators associated to the boundary value problems in a Sobolev space setting. These operators are analyzed and inverted in particular cases, which gives us the analytical solution of a number of well-posed problems.
引用
收藏
页码:269 / 300
页数:32
相关论文
共 50 条
  • [1] Boundary Value Problems for the Helmholtz Equation in an Octant
    Frank-Olme Speck
    Ernst Peter Stephan
    Integral Equations and Operator Theory, 2008, 62 : 269 - 300
  • [2] Boundary Value Problems for the Associated Helmholtz Equation
    Kapustin, S. A.
    Raevskii, A. S.
    Raevskii, S. B.
    JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS, 2020, 65 (11) : 1252 - 1257
  • [3] BOUNDARY VALUE PROBLEMS FOR HELMHOLTZ EQUATION AND THEIR APPLICATIONS
    Maher, Ahmed
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2013, 10 (03)
  • [4] Boundary Value Problems for the Associated Helmholtz Equation
    S. A. Kapustin
    A. S. Raevskii
    S. B. Raevskii
    Journal of Communications Technology and Electronics, 2020, 65 : 1252 - 1257
  • [5] MIXED BOUNDARY VALUE PROBLEMS FOR THE HELMHOLTZ EQUATION
    Natroshvili, David
    Tsertsvadze, Tornike
    JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2022, 34 (04) : 475 - 488
  • [6] Mixed Boundary Value Problems for the Helmholtz Equation in a Quadrant
    L. P. Castro
    F. -O. Speck
    F. S. Teixeira
    Integral Equations and Operator Theory, 2006, 56 : 1 - 44
  • [7] Mixed boundary value problems for the Helmholtz equation in a quadrant
    Castro, L. P.
    Speck, F. -O.
    Teixeira, F. S.
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2006, 56 (01) : 1 - 44
  • [8] Boundary value problems associated to a Hermitian Helmholtz equation
    Abreu-Blaya, Ricardo
    Bory-Reyes, Juan
    Brack, Fred
    De Schepper, Hennie
    Sommen, Frank
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 389 (02) : 1268 - 1279
  • [9] Multiplicity of eigenvalues in certain boundary value problems for the Helmholtz equation
    Malakhov, V. A.
    Nazarov, A. V.
    Raevskii, A. S.
    Raevskii, S. B.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2013, 53 (05) : 616 - 624
  • [10] Multiplicity of eigenvalues in certain boundary value problems for the Helmholtz equation
    V. A. Malakhov
    A. V. Nazarov
    A. S. Raevskii
    S. B. Raevskii
    Computational Mathematics and Mathematical Physics, 2013, 53 : 616 - 624