Packing tight Hamilton cycles in 3-uniform hypergraphs

被引:15
|
作者
Frieze, Alan [1 ]
Krivelevich, Michael [2 ]
Loh, Po-Shen [1 ]
机构
[1] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
[2] Tel Aviv Univ, Sch Math Sci, Raymond & Beverly Sackler Fac Exact Sci, IL-69978 Tel Aviv, Israel
基金
以色列科学基金会;
关键词
Hamilton cycles; random hypergraphs; packing; DECOMPOSITIONS; MATCHINGS; GRAPHS;
D O I
10.1002/rsa.20374
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Let H be a 3-uniform hypergraph with n vertices. A tight Hamilton cycle C ? H is a collection of n edges for which there is an ordering of the vertices v1,.,vn such that every triple of consecutive vertices {vi,vi+1,vi+2} is an edge of C (indices are considered modulo n ). We develop new techniques which enable us to prove that under certain natural pseudo-random conditions, almost all edges of H can be covered by edge-disjoint tight Hamilton cycles, for n divisible by 4. Consequently, we derive the corollary that random 3-uniform hypergraphs can be almost completely packed with tight Hamilton cycles whp, for n divisible by 4 and p not too small. Along the way, we develop a similar result for packing Hamilton cycles in pseudo-random digraphs with even numbers of vertices. (C) 2011 Wiley Periodicals, Inc. Random Struct. Alg., 2011
引用
收藏
页码:269 / 300
页数:32
相关论文
共 50 条
  • [21] Decompositions of complete 3-uniform hypergraphs into small 3-uniform hypergraphs
    Bryant, Darryn
    Herke, Sarada
    Maenhaut, Barbara
    Wannasit, Wannasiri
    [J]. AUSTRALASIAN JOURNAL OF COMBINATORICS, 2014, 60 : 227 - 254
  • [22] Decomposing complete 3-uniform hypergraphs into Hamiltonian cycles
    Meszka, Mariusz
    Rosa, Alexander
    [J]. AUSTRALASIAN JOURNAL OF COMBINATORICS, 2009, 45 : 291 - 302
  • [23] Tight Hamilton Cycles in Random Hypergraphs
    Allen, Peter
    Boettcher, Julia
    Kohayakawa, Yoshiharu
    Person, Yury
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2015, 46 (03) : 446 - 465
  • [24] A pair degree condition for Hamiltonian cycles in 3-uniform hypergraphs
    Schuelke, Bjarne
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2023, 32 (05): : 762 - 781
  • [25] Asymptotics for Turan numbers of cycles in 3-uniform linear hypergraphs
    Ergemlidze, Beka
    Gyori, Ervin
    Methuku, Abhishek
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2019, 163 : 163 - 181
  • [26] The Ramsey Number for 3-Uniform Tight Hypergraph Cycles
    Haxell, P. E.
    Luczak, T.
    Peng, Y.
    Roedl, V.
    Rucinski, A.
    Skokan, J.
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2009, 18 (1-2): : 165 - 203
  • [27] On tight 9-cycle decompositions of complete 3-uniform hypergraphs
    Bunge, Ryan C.
    Darrow, Brian D., Jr.
    El-Zanati, Saad, I
    Hadaway, Kimberly P.
    Pryor, Megan K.
    Romer, Alexander J.
    Squires, Alexandra
    Stover, Anna C.
    [J]. AUSTRALASIAN JOURNAL OF COMBINATORICS, 2021, 80 : 233 - 240
  • [28] Prime 3-Uniform Hypergraphs
    Boussairi, Abderrahim
    Chergui, Brahim
    Ille, Pierre
    Zaidi, Mohamed
    [J]. GRAPHS AND COMBINATORICS, 2021, 37 (06) : 2737 - 2760
  • [29] On tight 6-cycle decompositions of complete 3-uniform hypergraphs
    Akin, Matthew
    Bunge, Ryan C.
    El-Zanati, Saad, I
    Hamilton, Joshua
    Kolle, Brittany
    Lehmann, Sabrina
    Neiburger, Levi
    [J]. DISCRETE MATHEMATICS, 2022, 345 (02)
  • [30] Covering 3-uniform hypergraphs by vertex-disjoint tight paths
    Han, Jie
    [J]. JOURNAL OF GRAPH THEORY, 2022, 101 (04) : 782 - 802