Video Frame Interpolation Transformer

被引:49
|
作者
Shi, Zhihao [1 ]
Xu, Xiangyu [2 ]
Liu, Xiaohong [3 ]
Chen, Jun [1 ]
Yang, Ming-Hsuan [4 ,5 ,6 ]
机构
[1] McMaster Univ, Hamilton, ON, Canada
[2] Nanyang Technol Univ, Singapore, Singapore
[3] Shanghai Jiao Tong Univ, Shanghai, Peoples R China
[4] Univ Calif Merced, Merced, CA USA
[5] Yonsei Univ, Seoul, South Korea
[6] Google Res, Mountain View, CA USA
关键词
D O I
10.1109/CVPR52688.2022.01696
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Existing methods for video interpolation heavily rely on deep convolution neural networks, and thus suffer from their intrinsic limitations, such as content-agnostic kernel weights and restricted receptive field. To address these issues, we propose a Transformer-based video interpolation framework that allows content-aware aggregation weights and considers long-range dependencies with the self-attention operations. To avoid the high computational cost of global self-attention, we introduce the concept of local attention into video interpolation and extend it to the spatial-temporal domain. Furthermore, we propose a space-time separation strategy to save memory usage, which also improves performance. In addition, we develop a multi-scale frame synthesis scheme to fully realize the potential of Transformers. Extensive experiments demonstrate the proposed model performs favorably against the state-of-the-art methods both quantitatively and qualitatively on a variety of benchmark datasets. The code and models are released at https : //github . com/zhshi0816/Video-Frame-Interpolation-Transformer.
引用
收藏
页码:17461 / 17470
页数:10
相关论文
共 50 条
  • [21] Depth-Aware Video Frame Interpolation
    Bao, Wenbo
    Lai, Wei-Sheng
    Ma, Chao
    Zhang, Xiaoyun
    Gao, Zhiyong
    Yang, Ming-Hsuan
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 3698 - 3707
  • [22] Motion-Aware Video Frame Interpolation
    Han, Pengfei
    Zhang, Fuhua
    Zhao, Bin
    Li, Xuelong
    [J]. NEURAL NETWORKS, 2024, 178
  • [23] Revisiting Adaptive Convolutions for Video Frame Interpolation
    Niklaus, Simon
    Mai, Long
    Wang, Oliver
    [J]. 2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2021), 2021, : 1098 - 1108
  • [24] Phase-Based Frame Interpolation for Video
    Meyer, Simone
    Wang, Oliver
    Zimmer, Henning
    Grosse, Max
    Sorkine-Hornung, Alexander
    [J]. 2015 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2015, : 1410 - 1418
  • [25] Video Frame Interpolation via Adaptive Convolution
    Niklaus, Simon
    Mai, Long
    Liu, Feng
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 2270 - 2279
  • [26] A comprehensive survey on video frame interpolation techniques
    Parihar, Anil Singh
    Varshney, Disha
    Pandya, Kshitija
    Aggarwal, Ashray
    [J]. VISUAL COMPUTER, 2022, 38 (01): : 295 - 319
  • [27] Hybrid Warping Fusion for Video Frame Interpolation
    Li, Yu
    Zhu, Ye
    Li, Ruoteng
    Wang, Xintao
    Luo, Yue
    Shan, Ying
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2022, 130 (12) : 2980 - 2993
  • [28] Progressive Motion Boosting for Video Frame Interpolation
    Xiao, Jing
    Xu, Kangmin
    Hu, Mengshun
    Liao, Liang
    Wang, Zheng
    Lin, Chia-Wen
    Wang, Mi
    Satoh, Shin'ichi
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 8076 - 8090
  • [29] A SUBJECTIVE QUALITY STUDY FOR VIDEO FRAME INTERPOLATION
    Danier, Duolikun
    Zhang, Fan
    Bull, David
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 1361 - 1365
  • [30] Video Frame Interpolation With Learnable Uncertainty and Decomposition
    Yu, Zhiyang
    Chen, Xijun
    Ren, Shunqing
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 2642 - 2646