Quadratic Programming and Penalized Regression

被引:0
|
作者
Smith, Andrew D. A. C. [1 ]
机构
[1] Univ Bristol, Sch Math, Bristol BS8 1TW, Avon, England
关键词
Multiresolution; Nonparametric regression; Penalized regression; Quadratic programming; Total variation; SELECTION;
D O I
10.1080/03610926.2012.732177
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Quadratic programming is a versatile tool for calculating estimates in penalized regression. It can be used to produce estimates based on L-1 roughness penalties, as in total variation denoising. In particular, it can calculate estimates when the roughness penalty is the total variation of a derivative of the estimate. Combining two roughness penalties, the total variation and total variation of the third derivative, results in an estimate with continuous second derivative but controls the number of spurious local extreme values. A multiresolution criterion may be included in a quadratic program to achieve local smoothing without having to specify smoothing parameters.
引用
收藏
页码:1363 / 1372
页数:10
相关论文
共 50 条
  • [1] QUADRATIC PROGRAMMING FOR NONLINEAR REGRESSION
    SHRAGER, RI
    [J]. COMMUNICATIONS OF THE ACM, 1972, 15 (01) : 41 - &
  • [2] QUADRATIC DEVIATION OF PENALIZED MEAN SQUARES REGRESSION ESTIMATES
    DOUKHAN, P
    GASSIAT, E
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 1992, 41 (01) : 89 - 101
  • [3] PENALIZED INTERACTION ESTIMATION FOR ULTRAHIGH DIMENSIONAL QUADRATIC REGRESSION
    Wang, Cheng
    Jiang, Binyan
    Zhu, Liping
    [J]. STATISTICA SINICA, 2021, 31 (03) : 1549 - 1570
  • [4] Penalized semidefinite programming for quadratically-constrained quadratic optimization
    Ramtin Madani
    Mohsen Kheirandishfard
    Javad Lavaei
    Alper Atamtürk
    [J]. Journal of Global Optimization, 2020, 78 : 423 - 451
  • [5] Penalized semidefinite programming for quadratically-constrained quadratic optimization
    Madani, Ramtin
    Kheirandishfard, Mohsen
    Lavaei, Javad
    Atamturk, Alper
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2020, 78 (03) : 423 - 451
  • [6] Quadratic programming formulations for classificationand regression
    Gilbert, Robin C.
    Trafalis, Theodore B.
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2009, 24 (02): : 175 - 185
  • [7] Interval regression analysis by quadratic programming approach
    Tanaka, H
    Lee, H
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 1998, 6 (04) : 473 - 481
  • [8] Interval regression analysis based on quadratic programming
    Tanaka, H
    Koyama, K
    Lee, H
    [J]. FUZZ-IEEE '96 - PROCEEDINGS OF THE FIFTH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-3, 1996, : 325 - 329
  • [9] Penalized expectile regression: an alternative to penalized quantile regression
    Lina Liao
    Cheolwoo Park
    Hosik Choi
    [J]. Annals of the Institute of Statistical Mathematics, 2019, 71 : 409 - 438
  • [10] Penalized expectile regression: an alternative to penalized quantile regression
    Liao, Lina
    Park, Cheolwoo
    Choi, Hosik
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2019, 71 (02) : 409 - 438