Efficient quadrature rules for solving nonlinear fractional integro-differential equations of the Hammerstein type

被引:11
|
作者
Susahab, D. Nazari [1 ]
Shahmorad, S. [2 ]
Jahanshahi, M. [1 ]
机构
[1] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz 5375171379, Iran
[2] Univ Tabriz, Dept Appl Math, Tabriz 5166616471, Iran
关键词
Quadrature method; Hammerstein type; Fractional integro-differential equations; OPERATIONAL MATRIX; VOLTERRA;
D O I
10.1016/j.apm.2015.01.008
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The aim of this paper is to solve nonlinear fractional integro-differential equations of the Hammerstein type. The basic idea is to convert fractional integro-differential equations to a type of second kind Volterra integral equations. Then the obtained Volterra integral equation will be solved with some suitable quadrature rules. We are interested in using a simple method to obtain riveting results. Numerical tests for demonstrating the convergence and accuracy of the method will be included. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:5452 / 5458
页数:7
相关论文
共 50 条
  • [1] TRAPEZOIDAL QUADRATURE RULE FOR SOLVING NONLINEAR FUZZY FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS OF THE HAMMERSTEIN TYPE
    Gholam, A. Mashhadi
    Ezzati, R.
    Allahviranloo, T.
    PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON CONTROL AND OPTIMIZATION WITH INDUSTRIAL APPLICATIONS, VOL I, 2018, : 267 - 269
  • [2] A Study on Functional Fractional Integro-Differential Equations of Hammerstein type
    Saeedi, Leila
    Tari, Abolfazl
    Babolian, Esmail
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2020, 8 (01): : 173 - 193
  • [3] Wilson wavelets method for solving nonlinear fractional Fredholm-Hammerstein integro-differential equations
    Mousavi, B. Kh.
    Heydari, M. H.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2020, 97 (11) : 2165 - 2177
  • [4] An efficient method for solving systems of fractional integro-differential equations
    Momani, S.
    Qaralleh, R.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2006, 52 (3-4) : 459 - 470
  • [5] Efficient method for solving nonlinear weakly singular kernel fractional integro-differential equations
    Ameen, Ismail Gad
    Baleanu, Dumitru
    Hussien, Hussien Shafei
    AIMS MATHEMATICS, 2024, 9 (06): : 15819 - 15836
  • [6] A Quadrature Tau Method for Solving Fractional Integro-Differential Equations in the Caputo Sense
    Yousefi, A.
    Mahdavi-Rad, T.
    Shafiei, S. G.
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2015, 15 (02): : 97 - 107
  • [7] A new numerical scheme for solving pantograph type nonlinear fractional integro-differential equations
    Jafari, H.
    Tuan, N. A.
    Ganji, R. M.
    JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2021, 33 (01)
  • [8] Fractional type of flatlet oblique multiwavelet for solving fractional differential and integro-differential equations
    Darani, Mohammadreza Ahmadi
    Bagheri, Shirin
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2014, 2 (04): : 268 - 282
  • [9] A Numerical Scheme for Solving Nonlinear Fractional Volterra Integro-Differential Equations
    Rahimkhani, Parisa
    Ordokhani, Yadollah
    Babolian, Esmail
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2018, 13 (02): : 111 - 132
  • [10] Application of the collocation method for solving nonlinear fractional integro-differential equations
    Eslahchi, M. R.
    Dehghan, Mehdi
    Parvizi, M.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 257 : 105 - 128