Hamiltonian Particle-in-Cell methods for Vlasov-Poisson equations

被引:5
|
作者
Gu, Anjiao [1 ,2 ]
He, Yang [3 ]
Sun, Yajuan [1 ,2 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, ICMSEC, LSEC, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
[3] Univ Sci & Technol Beijing, Sch Math & Phys, Beijing 100083, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Vlasov-Poisson system; Poisson bracket; Finite element method; Structure-preserving algorithm; Hamiltonian splitting method; SCHEMES; SYSTEM;
D O I
10.1016/j.jcp.2022.111472
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, Particle-in-Cell algorithms for the Vlasov-Poisson system are presented based on its Poisson bracket structure. The Poisson equation is solved by finite element methods, in which the appropriate finite element spaces are taken to guarantee that the semi-discretized system possesses a well defined discrete Poisson bracket structure. Then, splitting methods are applied to the semi-discretized system by decomposing the Hamiltonian function. The resulting discretizations are proved to be Poisson bracket preserving. Moreover, the conservative quantities of the system are also well preserved. In numerical experiments, we use the presented numerical methods to simulate various physical phenomena. Due to the huge computational effort of the practical computations, we employ the strategy of parallel computing. The numerical results verify the efficiency of the new derived numerical discretizations. (C) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] An interpolating particle method for the Vlasov-Poisson equation
    Wilhelm, R. Paul
    Kirchhart, Matthias
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 473
  • [22] On the low Lagrangian formulation of Vlasov-Poisson equations
    Er, Derya Coksak
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2023, 52 (04): : 983 - 994
  • [23] Numerical solution of the system of Vlasov-Poisson equations
    Lee, SS
    Lee, ST
    Yang, JY
    JOURNAL OF THE CHINESE INSTITUTE OF ENGINEERS, 1999, 22 (03) : 341 - 350
  • [24] Numerical solution of the system of Vlasov-Poisson equations
    Lee, Shyi-Shiun
    Lee, Shih-Tuen
    Journal of the Chinese Institute of Engineers, Transactions of the Chinese Institute of Engineers,Series A/Chung-kuo Kung Ch'eng Hsuch K'an, 1999, 22 (03): : 341 - 350
  • [25] Sectionally analytic solutions of the Vlasov-Poisson equations
    Nocera, L.
    Palumbo, L. J.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (10)
  • [26] LINEARIZED VLASOV-POISSON EQUATIONS FOR THE PLANAR MAGNETRON
    KAUP, DJ
    THOMAS, GE
    PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1992, 4 (08): : 2640 - 2644
  • [27] Geometric particle-in-cell methods for the Vlasov-Maxwell equations with spin effects
    Crouseilles, Nicolas
    Hervieux, Paul-Antoine
    Li, Yingzhe
    Manfredi, Giovanni
    Sun, Yajuan
    JOURNAL OF PLASMA PHYSICS, 2021, 87 (03)
  • [28] STREAMLINE DIFFUSION METHODS FOR THE VLASOV-POISSON EQUATION
    ASADZADEH, M
    RAIRO-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1990, 24 (02): : 177 - 196
  • [29] THE CONVERGENCE ANALYSIS OF FULLY DISCRETIZED PARTICLE METHODS FOR SOLVING VLASOV-POISSON SYSTEMS
    VICTORY, HD
    TUCKER, G
    GANGULY, K
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (04) : 955 - 989
  • [30] VLASOV-POISSON SYSTEM TACKLED BY PARTICLE SIMULATION UTILIZING BOUNDARY ELEMENT METHODS
    Kebssler, Torsten
    Rjasanow, Sergej
    Weisser, Steffen
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (01): : B299 - B326