Hamiltonian Particle-in-Cell methods for Vlasov-Poisson equations

被引:5
|
作者
Gu, Anjiao [1 ,2 ]
He, Yang [3 ]
Sun, Yajuan [1 ,2 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, ICMSEC, LSEC, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
[3] Univ Sci & Technol Beijing, Sch Math & Phys, Beijing 100083, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Vlasov-Poisson system; Poisson bracket; Finite element method; Structure-preserving algorithm; Hamiltonian splitting method; SCHEMES; SYSTEM;
D O I
10.1016/j.jcp.2022.111472
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, Particle-in-Cell algorithms for the Vlasov-Poisson system are presented based on its Poisson bracket structure. The Poisson equation is solved by finite element methods, in which the appropriate finite element spaces are taken to guarantee that the semi-discretized system possesses a well defined discrete Poisson bracket structure. Then, splitting methods are applied to the semi-discretized system by decomposing the Hamiltonian function. The resulting discretizations are proved to be Poisson bracket preserving. Moreover, the conservative quantities of the system are also well preserved. In numerical experiments, we use the presented numerical methods to simulate various physical phenomena. Due to the huge computational effort of the practical computations, we employ the strategy of parallel computing. The numerical results verify the efficiency of the new derived numerical discretizations. (C) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] THE CONVERGENCE THEORY OF PARTICLE-IN-CELL METHODS FOR MULTIDIMENSIONAL VLASOV-POISSON SYSTEMS
    VICTORY, HD
    ALLEN, EJ
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (05) : 1207 - 1241
  • [2] Hamiltonian particle-in-cell methods for Vlasov-Maxwell equations
    He, Yang
    Sun, Yajuan
    Qin, Hong
    Liu, Jian
    PHYSICS OF PLASMAS, 2016, 23 (09)
  • [3] PARTICLE METHODS FOR THE ONE-DIMENSIONAL VLASOV-POISSON EQUATIONS
    COTTET, GH
    RAVIART, PA
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1984, 21 (01) : 52 - 76
  • [4] ASYMPTOTICALLY STABLE PARTICLE-IN-CELL METHODS FOR THE VLASOV-POISSON SYSTEM WITH A STRONG EXTERNAL MAGNETIC FIELD
    Filbet, Francis
    Rodrigues, Luis Miguel
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (02) : 1120 - 1146
  • [5] On the approximation of the Vlasov-Poisson system by particle methods
    Wollman, S
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 37 (04) : 1369 - 1398
  • [6] High-order Hamiltonian splitting for the Vlasov-Poisson equations
    Casas, Fernando
    Crouseilles, Nicolas
    Faou, Erwan
    Mehrenberger, Michel
    NUMERISCHE MATHEMATIK, 2017, 135 (03) : 769 - 801
  • [7] On the velocity space discretization for the Vlasov-Poisson system: Comparison between implicit Hermite spectral and Particle-in-Cell methods
    Camporeale, E.
    Delzanno, G. L.
    Bergen, B. K.
    Moulton, J. D.
    COMPUTER PHYSICS COMMUNICATIONS, 2016, 198 : 47 - 58
  • [8] Asymptotic-Preserving Particle-In-Cell method for the Vlasov-Poisson system near quasineutrality
    Degond, Pierre
    Deluzet, Fabrice
    Navoret, Laurent
    Sun, An-Bang
    Vignal, Marie-Helene
    JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (16) : 5630 - 5652
  • [9] ON THE CONVERGENCE OF PARTICLE METHODS FOR MULTIDIMENSIONAL VLASOV-POISSON SYSTEMS
    GANGULY, K
    VICTORY, HD
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1989, 26 (02) : 249 - 288
  • [10] SYMMETRIZATION OF VLASOV-POISSON EQUATIONS
    Despres, Bruno
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2014, 46 (04) : 2554 - 2580