Interfacial trapping mechanism of He in Cu-Nb multilayer materials

被引:20
|
作者
McPhie, M. G. [1 ]
Capolungo, L. [1 ,2 ]
Dunn, A. Y. [1 ]
Cherkaui, M. [1 ,2 ]
机构
[1] Georgia Tech CNRS, UMI 2958, F-57070 Metz, France
[2] Georgia Inst Technol, GW Woodruff Sch Mech Engn, Atlanta, GA 30332 USA
关键词
HELIUM-VACANCY CLUSTERS; GRAIN-BOUNDARIES; RADIATION-DAMAGE; IMPLANTED HE; IRRADIATION; INTERSTITIALS; SIMULATIONS; NUCLEATION; DIFFUSION; DEFECTS;
D O I
10.1016/j.jnucmat.2013.02.015
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
He atom trapping in hetero-interphase materials is studied by atomistic simulations, focusing on the KSI and KSmin interfaces in Cu-Nb. If the bulk crystalline materials are defect free, single He atoms eventually become absorbed into the interfacial region via one of two different processes. In the first process, all He atoms arriving at the interface from the Cu side of the interface and some He atoms arriving from the Nb side, are trapped via the formation of a helium-vacancy (Hey) cluster in the second or third interfacial planes of the copper crystal. The immobile HeV cluster is found to be stable against dissociation and recombination. In the second case the He atoms are absorbed as interstitial atoms in one of the terminal planes. This process is dependent on the interstitial content of the interface and is found to be weak in the case of the KSI interface. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:222 / 228
页数:7
相关论文
共 50 条
  • [41] Determination of Activities of Niobium in Cu-Nb Melts Containing Dilute Nb
    Wang, Daya
    Yan, Baijun
    Du Sichen
    METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE, 2015, 46 (02): : 533 - 536
  • [42] Elasto-plastic properties of Cu-Nb nanolaminate
    Betekhtin, V. I.
    Kolobov, Yu. R.
    Kardashev, B. K.
    Golosov, E. V.
    Narykova, M. V.
    Kadomtsev, A. G.
    Klimenko, D. N.
    Karpov, M. I.
    TECHNICAL PHYSICS LETTERS, 2012, 38 (02) : 144 - 146
  • [43] Cold-deformed Cu-Ag and Cu-Nb composites
    Han, K
    Ishmaku, A
    Xin, Y
    Kalu, PN
    ULTRAFINE GRAINED MATERIALS III, 2004, : 273 - 278
  • [44] Size effect on texture of multiscale Cu in Cu-Nb nanocomposite wires
    Xiang, Shihua
    Yang, Xiaofang
    Wang, Lu
    Qiu, Youcai
    Li, Jingxiao
    Liang, Yanxiang
    MATERIALS CHARACTERIZATION, 2024, 218
  • [45] Pulsed Solenoid with Nanostructured Cu-Nb Wire Winding
    Bykov, A. A.
    Popkov, S. I.
    Parshin, A. M.
    Krasikov, A. A.
    JOURNAL OF SURFACE INVESTIGATION, 2015, 9 (01): : 111 - 115
  • [46] Deformation and failure of shocked bulk Cu-Nb nanolaminates
    Han, W. Z.
    Cerreta, E. K.
    Mara, N. A.
    Beyerlein, I. J.
    Carpenter, J. S.
    Zheng, S. J.
    Trujillo, C. P.
    Dickerson, P. O.
    Misra, A.
    ACTA MATERIALIA, 2014, 63 : 150 - 161
  • [47] MICROSTRUCTURAL ANALYSIS OF INSITU CU-NB COMPOSITE WIRES
    PELTON, AR
    LAABS, FC
    SPITZIG, WA
    CHENG, CC
    JOURNAL OF METALS, 1986, 38 (10): : 29 - 29
  • [48] Microstructure and texture evolution of Cu-Nb composite wires
    Deng, Liping
    Yang, Xiaofang
    Han, Ke
    Lu, Yafeng
    Liang, Ming
    Liu, Qing
    MATERIALS CHARACTERIZATION, 2013, 81 : 124 - 133
  • [49] Measurements of liquidus temperatures in the Cu-Nb and Cu-Cr systems
    Li, D
    Robinson, MB
    Rathz, TJ
    JOURNAL OF PHASE EQUILIBRIA, 2000, 21 (02): : 136 - 140
  • [50] Characterization of consolidated rapidly solidified Cu-Nb ribbons
    Ebrahimi, F
    Henne, MLC
    NANOPHASE AND NANOCOMPOSITE MATERIALS II, 1997, 457 : 279 - 284