Interfacial trapping mechanism of He in Cu-Nb multilayer materials

被引:20
|
作者
McPhie, M. G. [1 ]
Capolungo, L. [1 ,2 ]
Dunn, A. Y. [1 ]
Cherkaui, M. [1 ,2 ]
机构
[1] Georgia Tech CNRS, UMI 2958, F-57070 Metz, France
[2] Georgia Inst Technol, GW Woodruff Sch Mech Engn, Atlanta, GA 30332 USA
关键词
HELIUM-VACANCY CLUSTERS; GRAIN-BOUNDARIES; RADIATION-DAMAGE; IMPLANTED HE; IRRADIATION; INTERSTITIALS; SIMULATIONS; NUCLEATION; DIFFUSION; DEFECTS;
D O I
10.1016/j.jnucmat.2013.02.015
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
He atom trapping in hetero-interphase materials is studied by atomistic simulations, focusing on the KSI and KSmin interfaces in Cu-Nb. If the bulk crystalline materials are defect free, single He atoms eventually become absorbed into the interfacial region via one of two different processes. In the first process, all He atoms arriving at the interface from the Cu side of the interface and some He atoms arriving from the Nb side, are trapped via the formation of a helium-vacancy (Hey) cluster in the second or third interfacial planes of the copper crystal. The immobile HeV cluster is found to be stable against dissociation and recombination. In the second case the He atoms are absorbed as interstitial atoms in one of the terminal planes. This process is dependent on the interstitial content of the interface and is found to be weak in the case of the KSI interface. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:222 / 228
页数:7
相关论文
共 50 条
  • [1] Arrest of He bubble growth in Cu-Nb multilayer nanocomposites
    Hattar, K.
    Demkowicz, M. J.
    Misra, A.
    Robertson, I. M.
    Hoagland, R. G.
    SCRIPTA MATERIALIA, 2008, 58 (07) : 541 - 544
  • [2] Role of interfaces on the trapping of He in 2D and 3D Cu-Nb nanocomposites
    Lach, Timothy G.
    Ekiz, Elvan H.
    Averback, Robert S.
    Mara, Nathan A.
    Bellon, Pascal
    JOURNAL OF NUCLEAR MATERIALS, 2015, 466 : 36 - 42
  • [3] Microstructure and hardening mechanism of Cu-Nb composites
    Popova, E.N.
    Rodionova, L.A.
    Popov, V.V.
    Sudareva, S.V.
    Romanov, E.R.
    Vorob'eva, A.E.
    Dergunova, E.A.
    Shikov, A.K.
    Pantsyrnyj, V.I.
    Fizika Metallov i Metallovedenie, 1997, (11): : 114 - 130
  • [4] Microstructure and strengthening mechanism of Cu-Nb composites
    Popova, EN
    Rodionova, LA
    Popov, VV
    Sudareva, SV
    Romanov, YP
    Vorob'yeva, AY
    Dergunova, YA
    Shikov, AK
    Pantsyrnyy, VI
    FIZIKA METALLOV I METALLOVEDENIE, 1997, 84 (05): : 114 - 130
  • [5] Interface structure and radiation damage resistance in Cu-Nb multilayer nanocomposites
    Demkowicz, M. J.
    Hoagland, R. G.
    Hirth, J. P.
    PHYSICAL REVIEW LETTERS, 2008, 100 (13)
  • [6] Interfacial properties of Cu-Nb multilayers as a function of dislocation/disconnection content
    Abdolrahim, N.
    Mastorakos, I. N.
    Zbib, H. M.
    Bahr, D. F.
    TMS2011 SUPPLEMENTAL PROCEEDINGS, VOL 2: MATERIALS FABRICATION, PROPERTIES, CHARACTERIZATION, AND MODELING, 2011, : 75 - 82
  • [7] Microstructure in Cu-Nb microcomposites
    Leprince-Wang, Y
    Han, K
    Huang, Y
    Yu-Zhang, K
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2003, 351 (1-2): : 214 - 223
  • [8] He implantation of bulk Cu-Nb nanocomposites fabricated by accumulated roll bonding
    Han, W. Z.
    Mara, N. A.
    Wang, Y. Q.
    Misra, A.
    Demkowicz, M. J.
    JOURNAL OF NUCLEAR MATERIALS, 2014, 452 (1-3) : 57 - 60
  • [9] Interfacial structures of Cu-Nb filamentary nanocomposites in the As-drawn and annealed conditions
    Lee, KH
    Hong, SI
    NANOMATERIALS BY SEVERE PLASTIC DEFORMATION, 2006, 503-504 : 907 - 912
  • [10] The structure and associated formation mechanism of deformation twins in Cu-Nb alloy
    Lei, Ruoshan
    Chen, Guangruan
    Wang, Mingpu
    Xu, Shiqing
    Wang, Huanping
    PROCEEDINGS OF THE6TH INTERNATIONAL CONFERENCE ON MECHATRONICS, MATERIALS, BIOTECHNOLOGY AND ENVIRONMENT (ICMMBE 2016), 2016, 83 : 245 - 248