Seeking efficient data augmentation schemes via conditional and marginal augmentation

被引:113
|
作者
Meng, XL [1 ]
Van Dyk, DA
机构
[1] Univ Chicago, Dept Stat, Chicago, IL 60637 USA
[2] Harvard Univ, Dept Stat, Cambridge, MA 02138 USA
基金
美国国家科学基金会;
关键词
auxiliary variable; EM algorithm; incomplete data; Markov chain Monte Carlo; PXEM algorithm; rate of convergence; working parameter;
D O I
10.1093/biomet/86.2.301
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Data augmentation, sometimes known as the method of auxiliary variables, is a powerful tool for constructing optimisation and simulation algorithms. In the context of optimisation, Meng & van Dyk (1997, 1998) reported several successes of the 'working parameter' approach for constructing efficient data-augmentation schemes for fast and simple EM-type algorithms. This paper investigates the use of working parameters in the context of Markov chain Monte Carlo, in particular in the context of Tanner & Wong's (1987) data augmentation algorithm, via a theoretical study of two working-parameter approaches, the conditional augmentation approach and the marginal augmentation approach. Posterior sampling under the univariate t model is used as a running example, which particularly illustrates how the marginal augmentation approach obtains a fast-mixing positive recurrent Markov chain by first constructing a nonpositive recurrent Markov chain in a larger space.
引用
收藏
页码:301 / 320
页数:20
相关论文
共 50 条
  • [1] Conditional Face Synthesis for Data Augmentation
    Huang, Rui
    Xie, Xiaohua
    Lai, Jianhuang
    Feng, Zhanxiang
    [J]. PATTERN RECOGNITION AND COMPUTER VISION, PT III, 2018, 11258 : 137 - 149
  • [2] Conditional Data Augmentation For Sky Segmentation
    Zhu, Zheng-An
    Chen, Chien-Hao
    Chiang, Chen-Kuo
    [J]. 22ND IEEE/ACIS INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, ARTIFICIAL INTELLIGENCE, NETWORKING AND PARALLEL/DISTRIBUTED COMPUTING (SNPD 2021-FALL), 2021, : 177 - 182
  • [3] A theoretical comparison of the data augmentation, marginal augmentation and PX-DA algorithms
    Hobert, James P.
    Marchev, Dobrin
    [J]. ANNALS OF STATISTICS, 2008, 36 (02): : 532 - 554
  • [4] Data Augmentation for Audio-Visual Emotion Recognition with an Efficient Multimodal Conditional GAN
    Ma, Fei
    Li, Yang
    Ni, Shiguang
    Huang, Shao-Lun
    Zhang, Lin
    [J]. APPLIED SCIENCES-BASEL, 2022, 12 (01):
  • [5] Efficient Contrastive Learning via Novel Data Augmentation and Curriculum Learning
    Ye, Seonghyeon
    Kim, Jiseon
    Oh, Alice
    [J]. 2021 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2021), 2021, : 1832 - 1838
  • [6] Efficient Data Augmentation Policy for Electrocardiograms
    Lee, Byeong Tak
    Jo, Yong-Yeon
    Lim, Seon-Yu
    Song, Youngjae
    Kwon, Joon-myoung
    [J]. PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 4153 - 4157
  • [7] Improving Chinese Grammatical Error Detection via Data augmentation by Conditional Error Generation
    Yue, Tianchi
    Liu, Shulin
    Cai, Huihui
    Yang, Tao
    Song, Shengkang
    Yu, Tinghao
    [J]. FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2022), 2022, : 2966 - 2975
  • [8] Conditional Infilling GANs for Data Augmentation in Mammogram Classification
    Wu, Eric
    Wu, Kevin
    Cox, David
    Lotter, William
    [J]. IMAGE ANALYSIS FOR MOVING ORGAN, BREAST, AND THORACIC IMAGES, 2018, 11040 : 98 - 106
  • [9] Conditional Generative Data Augmentation for Clinical Audio Datasets
    Seibold, Matthias
    Hoch, Armando
    Farshad, Mazda
    Navab, Nassir
    Fuernstahl, Philipp
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT VII, 2022, 13437 : 345 - 354
  • [10] Data Augmentation with Conditional GAN for Automatic Modulation Classification
    Patel, Mansi
    Wang, Xuyu
    Mao, Shiwen
    [J]. PROCEEDINGS OF THE 2ND ACM WORKSHOP ON WIRELESS SECURITY AND MACHINE LEARNING, WISEML 2020, 2020, : 31 - 36