Enhancing Side Chain Rotamer Sampling Using Nonequilibrium Candidate Monte Carlo

被引:22
|
作者
Burley, Kalistyn H. [1 ]
Gill, Samuel C. [2 ]
Lim, Nathan M. [1 ]
Mobley, David L. [1 ,2 ]
机构
[1] Univ Calif Irvine, Dept Pharmaceut Sci, Irvine, CA 92697 USA
[2] Univ Calif Irvine, Dept Chem, Irvine, CA 92617 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
BINDING FREE-ENERGIES; ALANINE DIPEPTIDE; LIGAND-BINDING; T4; LYSOZYME; MOLECULAR-DYNAMICS; CONFORMATIONAL-ANALYSIS; NONPOLAR CAVITY; SIMULATIONS; PREFERENCES; SPECIFICITY;
D O I
10.1021/acs.jctc.8b01018
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Molecular simulations are a valuable tool for studying bomolecular motions and thermodynamics. However, such motions can be slow compared to simulation time scales, yet critical Specifically, adequate sampling of side chain motions in protein binding pockets is crucial for obtaining accurate estimates of ligand binding free energies from molecular simulations. The time scale of side chain rotamer flips can range from a few ps to several hundred ns or longer, particularly in crowded environments like the interior of proteins. Here, we apply a mixed nonequilibrium candidate Monte Carlo (NCMC)/molecular dynamics (MD) method to enhance sampling of side chain rotamers. The NCMC portion of our method applies a switching protocol wherein the steric and electrostatic interactions between target side chain atoms and the surrounding environment are cycled off and then back on during the course of a move proposal. Between NCMC move proposals, simulation of the system continues via traditional molecular dynamics. Here, we first validate this approach on a simple, solvated valine-alanine dipeptide system and then apply it to a well-studied model ligand binding site in T4 lysozyme L99A. We compute the rate of rotamer transitions for a valine side chain using our approach and compare it to that of traditional molecular dynamics simulations. Here, we show that our NCMC/MD method substantially enhances side chain sampling, especially in systems where the torsional barrier to rotation is high (>= 10 kcal/mol). These barriers can be intrinsic torsional barriers or steric barriers imposed by the environment. Overall, this may provide a promising strategy to selectively improve side chain sampling in molecular simulations.
引用
收藏
页码:1848 / 1862
页数:15
相关论文
共 50 条
  • [1] Enhancing side chain rotamer sampling using non-equilibrium candidate Monte Carlo
    Burley, Kalistyn
    Gill, Samuel
    Lim, Nathan
    Goulding, Celia
    Mobley, David
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [2] Enhancing water sampling of buried binding sites using nonequilibrium candidate Monte Carlo
    Teresa Danielle Bergazin
    Ido Y. Ben-Shalom
    Nathan M. Lim
    Sam C. Gill
    Michael K. Gilson
    David L. Mobley
    Journal of Computer-Aided Molecular Design, 2021, 35 : 167 - 177
  • [3] Enhancing water sampling of buried binding sites using nonequilibrium candidate Monte Carlo
    Bergazin, Teresa Danielle
    Ben-Shalom, Ido Y.
    Lim, Nathan M.
    Gill, Sam C.
    Gilson, Michael K.
    Mobley, David L.
    JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2021, 35 (02) : 167 - 177
  • [4] Sampling binding modes of flexible ligands using nonequilibrium candidate Monte Carlo
    Sasmal, Sukanya
    Mobley, David
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [5] Enhanced Grand Canonical Sampling of Occluded Water Sites Using Nonequilibrium Candidate Monte Carlo
    Melling, Oliver J.
    Samways, Marley L.
    Ge, Yunhui
    Mobley, David L.
    Essex, Jonathan W.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2023, 19 (03) : 1050 - 1062
  • [6] Sampling Conformational Changes of Bound Ligands Using Nonequilibrium Candidate Monte Carlo and Molecular Dynamics
    Sasmal, Sukanya
    Gill, Samuel C.
    Lim, Nathan M.
    Mobley, David L.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2020, 16 (03) : 1854 - 1865
  • [7] Driving Structural Transitions in Molecular Simulations Using the Nonequilibrium Candidate Monte Carlo
    Kurut, Anil
    Fonseca, Rasmus
    Boomsma, Wouter
    JOURNAL OF PHYSICAL CHEMISTRY B, 2018, 122 (03): : 1195 - 1204
  • [8] Enhancing Ligand and Protein Sampling Using Sequential Monte Carlo
    Suruzhon, Miroslav
    Bodnarchuk, Michael S.
    Ciancetta, Antonella
    Wall, Ian D.
    Essex, Jonathan W.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2022, 18 (06) : 3894 - 3910
  • [9] Markov chain Monte Carlo sampling using a reservoir method
    Wang, Zhonglei
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2019, 139 : 64 - 74
  • [10] Nonequilibrium Candidate Monte Carlo Simulations with Configurational Freezing Schemes
    Giovannelli, Edoardo
    Gellini, Cristina
    Pietraperzia, Giangaetano
    Cardini, Gianni
    Chelli, Riccardo
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2014, 10 (10) : 4273 - 4283