Simulation of stratospheric ozone in global forecast model using linear photochemistry parameterization

被引:4
|
作者
Jeong, Gill-Ran [1 ]
Monge-Sanz, Beatriz M. [2 ]
Lee, Eun-Hee [1 ]
Ziemke, Jerald R. [3 ,4 ]
机构
[1] Korea Inst Atmospher Predict Syst, Seoul 07071, South Korea
[2] European Ctr Medium Range Weather Forecasts, Reading, Berks, England
[3] Morgan State Univ, Goddard Earth Sci Technol & Res, Baltimore, MD 21239 USA
[4] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA
关键词
Linear Photochemistry Parameterization (LPP); climatological ozone profiles; correlations; differential radiative fluxes; ozone hole; GENERAL-CIRCULATION MODEL; DATA ASSIMILATION SYSTEM; TROPOSPHERE; CHEMISTRY; SCHEMES; IMPACT;
D O I
10.1007/s13143-016-0032-x
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The two types of ozone, the simulation with interactive (prognostic) ozone using linear photochemistry parameterization (LPP) (INTR) and the simulation with non-interactive ozone using ozone climatology (CLIM), were used in the global forecast model. These two types of ozone were compared with ozone observations from the Aura Microwave Lim Sounder (MLS) and ozonesondes from 16-30 September 2008. The INTR is sensitive to LPP schemes while less sensitive to the time average of initial ozone data. Among three LPP schemes, CARIOLLE, COPCAT, and LINOZ, the COPCAT produces ozone profiles with least differences from MLS and ozonesondes. CLIM overestimates MLS at 200-20 hPa while INTR with COPCAT scheme underestimates MLS ozone above 5 hPa. Over the Antarctic in the lower stratosphere CLIM overestimates MLS and ozonesondes whereas INTR underestimates MLS but overestimates the ozonesonde data. Thus, COPCAT agrees better with ozonesonde data than any other LPP schemes and CLIM. Changing the ozone distribution from CLIM to INTR affects temperature profiles mainly through the modification of differential radiative fluxes. The correlations between ozone, differential radiative fluxes, and temperature are distinguished by altitude (or pressure levels). The correlations are strong or moderate between 3-1000 hPa (lower atmosphere) and weak above 3 hPa (upper atmosphere). This study demonstrates that the simulation of ozone using an appropriate LPP scheme is excellent in overcoming the drawbacks of using climatological ozone profiles that poorly agree with observations in extreme ozone hole events.
引用
收藏
页码:479 / 494
页数:16
相关论文
共 50 条
  • [41] Simulation of radar reflectivities using a mesoscale weather forecast model
    Haase, G
    Crewell, S
    [J]. WATER RESOURCES RESEARCH, 2000, 36 (08) : 2221 - 2231
  • [42] Profit Forecast Model Using Monte Carlo Simulation in Excel
    Balogh, Petru
    Golea, Pompiliu
    Inceu, Valentin
    [J]. ROMANIAN STATISTICAL REVIEW, 2013, (12) : 33 - 40
  • [43] Assimilation of stratospheric ozone from MIPAS into a global general-circulation model: The September 2002 vortex split
    Geer, AJ
    Peubey, C
    Bannister, RN
    Brugge, R
    Jackson, DR
    Lahoz, WA
    Migliorini, S
    O'Neill, A
    Swinbank, R
    [J]. QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2006, 132 (614) : 231 - 257
  • [44] Polar stratospheric clouds initiated by mountain waves in a global chemistry-climate model: a missing piece in fully modelling polar stratospheric ozone depletion
    Orr, Andrew
    Hosking, J. Scott
    Delon, Aymeric
    Hoffmann, Lars
    Spang, Reinhold
    Moffat-Griffin, Tracy
    Keeble, James
    Abraham, Nathan Luke
    Braesicke, Peter
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2020, 20 (21) : 12483 - 12497
  • [45] Interpretation of Mid-Stratospheric Arctic Ozone Measurements Using a Photochemical Box-Model
    B.-M. Sinnhuber
    R. Müller
    J. Langer
    H. Bovensmann
    V. Eyring
    U. Klein
    J. Trentmann
    J. P. Burrows
    K. F. Künzi
    [J]. Journal of Atmospheric Chemistry, 1999, 34 : 281 - 290
  • [46] Interpretation of mid-stratospheric Arctic ozone measurements using a photochemical box-model
    Sinnhuber, BM
    Müller, R
    Langer, J
    Bovensmann, H
    Eyring, V
    Klein, U
    Trentmann, J
    Burrows, JP
    Künzi, KF
    [J]. JOURNAL OF ATMOSPHERIC CHEMISTRY, 1999, 34 (03) : 281 - 290
  • [47] Experimental Global Forecasts of Atmospheric Parameters Based on Experimental Technology that Takes into Account Ozone Photochemistry (FOROZ Model)
    A. A. Krivolutsky
    T. Yu. V’yushkova
    M. V. Banin
    M. A. Tolstykh
    [J]. Geomagnetism and Aeronomy, 2020, 60 : 243 - 253
  • [48] The Lagrangian chemistry and transport model ATLAS: simulation and validation of stratospheric chemistry and ozone loss in the winter 1999/2000
    Wohltmann, I.
    Lehmann, R.
    Rex, M.
    [J]. GEOSCIENTIFIC MODEL DEVELOPMENT, 2010, 3 (02) : 585 - 601
  • [49] Experimental Global Forecasts of Atmospheric Parameters Based on Experimental Technology that Takes into Account Ozone Photochemistry (FOROZ Model)
    Krivolutsky, A. A.
    V'yushkova, T. Yu.
    Banin, M. V.
    Tolstykh, M. A.
    [J]. GEOMAGNETISM AND AERONOMY, 2020, 60 (02) : 243 - 253
  • [50] Simulation of surface runoff using semi distributed hydrological model for a part of Satluj Basin: parameterization and global sensitivity analysis using SWAT CUP
    Khatun S.
    Sahana M.
    Jain S.K.
    Jain N.
    [J]. Modeling Earth Systems and Environment, 2018, 4 (3) : 1111 - 1124