Elucidating the Li-Ion Battery Performance Benefits Enabled by Multifunctional Separators

被引:12
|
作者
Liu, Hanshuo [1 ]
Banerjee, Anjan [3 ]
Ziv, Baruch [3 ]
Harris, Kristopher J. [2 ]
Pieczonka, Nicholas P. W. [4 ]
Luski, Shalom [3 ]
Botton, Gianluigi A. [1 ]
Goward, Gillian R. [2 ]
Aurbach, Doron [3 ]
Halalay, Ion C. [4 ]
机构
[1] McMaster Univ, Dept Mat Sci & Engn, Hamilton, ON L8S 4K1, Canada
[2] McMaster Univ, Dept Chem, Hamilton, ON L8S 4K1, Canada
[3] Bar Ilan Univ, Dept Chem, IL-5290002 Ramat Gan, Israel
[4] Gen Motors, Global Res & Dev, Warren, MI 48092 USA
来源
ACS APPLIED ENERGY MATERIALS | 2018年 / 1卷 / 05期
基金
以色列科学基金会;
关键词
Li-ion batteries; Mn dissolution; LixMn2O4; graphite; functional separator; ion-exchange resin; SEI; FIB-SEM; TRANSITION-METAL IONS; MANGANESE SEQUESTRATION; TEMPERATURE PERFORMANCE; ELECTROLYTE; CATHODE; DISSOLUTION; DURABILITY; DEPOSITION;
D O I
10.1021/acsaem.8b00436
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The dissolution of transition metal ions from positive electrodes and loss of (both electroactive and transport) Li+ ions seriously impair the durability of lithium ion batteries. We show herein that the improvement in the cycle life of lithium manganate spinel-graphite cells effected by multifunctional separators results from smaller interfacial resistances at both positive and negative electrodes, that can in turn be traced back to thinner, more uniform, and chemically different surface films, due to lessened parasitic reactions and a decreased accumulation of parasitic reaction products at electrode surfaces, as evidenced by HR-SEM, FIB-SEM, EDX, F-19 MAS NMR, and ICP-OES data.
引用
收藏
页码:1878 / 1882
页数:9
相关论文
共 50 条
  • [31] Porous Membranes of Montmorillonite/Poly(vinylidene fluoride-trifluorethylene) for Li-Ion Battery Separators
    Nunes-Pereira, J.
    Lopes, A. C.
    Costa, C. M.
    Leones, R.
    Silva, M. M.
    Lanceros-Mendez, S.
    ELECTROANALYSIS, 2012, 24 (11) : 2147 - 2156
  • [32] Tensorial effective transport properties of Li-ion battery separators elucidated by computational multiscale modeling
    Zhuo, Mingzhao
    Grazioli, Davide
    Simone, Angelo
    ELECTROCHIMICA ACTA, 2021, 393 (393)
  • [33] The research progress of Li-ion battery separators with inorganic oxide nanoparticles by electrospinning: A mini review
    Chen, Hong-Li
    Jiao, Xiao-Ning
    Zhou, Jin-Tao
    FUNCTIONAL MATERIALS LETTERS, 2016, 9 (05)
  • [34] Performance and resource considerations of Li-ion battery electrode materials
    Ghadbeigi, Leila
    Harada, Jaye K.
    Lettiere, Bethany R.
    Sparks, Taylor D.
    ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (06) : 1640 - 1650
  • [35] Improving the electrochemical performance of organic Li-ion battery electrodes
    Renault, Steven
    Brandell, Daniel
    Gustafsson, Torbjorn
    Edstrom, Kristina
    CHEMICAL COMMUNICATIONS, 2013, 49 (19) : 1945 - 1947
  • [36] Carbon-Coatings Improve Performance of Li-Ion Battery
    Chen, Ziling
    Zhang, Qian
    Liang, Qijie
    NANOMATERIALS, 2022, 12 (11)
  • [37] New process holds promise for Li-ion battery performance
    不详
    ADVANCED MATERIALS & PROCESSES, 2014, 172 (10): : 14 - 14
  • [38] Effect of a compressed separator on the electrochemical performance of Li-ion battery
    Sun, Wei
    Li, Q. M.
    Xiao, Ping
    Carbone, Paola
    JOURNAL OF POWER SOURCES, 2023, 563
  • [39] Impact of electrolyte stability on electrochemical performance of Li-ion battery
    Wang, Chunsheng
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [40] DNA metallization for high performance Li-ion battery anodes
    Kim, Dong Jun
    Woo, Min-Ah
    Jung, Ye Lim
    Bharathi, K. Kamala
    Park, Hyun Gyu
    Kim, Do Kyung
    Choi, Jang Wook
    NANO ENERGY, 2014, 8 : 17 - 24