Harnack inequality and smoothness for quasilinear degenerate elliptic equations

被引:20
|
作者
Di Fazio, G. [1 ]
Fanciullo, M. S. [1 ]
Zamboni, P. [1 ]
机构
[1] Univ Catania, Dipartimento Matemat & Informat, I-95125 Catania, Italy
关键词
Harnack inequality; Muckenhoupt weights; Degenerate elliptic equations; Morrey classes;
D O I
10.1016/j.jde.2008.04.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove local and global regularity for the positive solutions of a quasilinear variational degenerate equation, assuming minimal hypothesis on the coefficients of the lower order terms. As an application we obtain Holder continuity for the gradient of solutions to nonvariational quasilinear equations. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:2939 / 2957
页数:19
相关论文
共 50 条
  • [1] Harnack inequality and regularity for degenerate quasilinear elliptic equations
    Di Fazio, G.
    Fanciullo, M. S.
    Zamboni, P.
    MATHEMATISCHE ZEITSCHRIFT, 2010, 264 (03) : 679 - 695
  • [2] Harnack inequality and regularity for degenerate quasilinear elliptic equations
    G. Di Fazio
    M. S. Fanciullo
    P. Zamboni
    Mathematische Zeitschrift, 2010, 264 : 679 - 695
  • [3] HARNACK INEQUALITY FOR WEAK SOLUTIONS OF DEGENERATE QUASILINEAR ELLIPTIC EQUATIONS
    EDMUNDS, DE
    PELETIER, LA
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1972, 5 (JUN): : 21 - &
  • [4] Harnack Inequality and Smoothness for some Non Linear Degenerate Elliptic Equations
    Di Fazio, Giuseppe
    Fanciullo, Maria S.
    Zamboni, Pietro
    MINIMAX THEORY AND ITS APPLICATIONS, 2019, 4 (01): : 87 - 99
  • [5] The Harnack inequality in ℝ2 for quasilinear elliptic equations
    P. Pucci
    J. Serrin
    Journal d’Analyse Mathématique, 2001, 85 : 307 - 321
  • [6] Harnack's Inequality and Applications of Quasilinear Degenerate Elliptic Equations with Rough and Singular Coefficients
    Niu, Pengcheng
    Wu, Leyun
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2018, 49 (02): : 279 - 312
  • [7] Harnack’s Inequality and Applications of Quasilinear Degenerate Elliptic Equations with Rough and Singular Coefficients
    Pengcheng Niu
    Leyun Wu
    Bulletin of the Brazilian Mathematical Society, New Series, 2018, 49 : 279 - 312
  • [8] HARNACK INEQUALITY FOR DEGENERATE ELLIPTIC EQUATIONS AND SUM OPERATORS
    Di Fazio, Giuseppe
    Fanciullo, Maria Stella
    Zamboni, Pietro
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2015, 14 (06) : 2363 - 2376
  • [9] HARNACK INEQUALITY FOR DEGENERATE ELLIPTIC EQUATIONS ON MINIMAL SURFACES
    COOPER, F
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1976, 20 (MAR) : 29 - 39
  • [10] The Harnack inequality for quasilinear elliptic equations under minimal assumptions
    Pietro Zamboni
    manuscripta mathematica, 2000, 102 : 311 - 323