Entanglement between a trapped-ion qubit and a 780-nm photon via quantum frequency conversion

被引:9
|
作者
Hannegan, John [1 ]
Siverns, James D.
Quraishi, Qudsia [1 ,2 ]
机构
[1] Univ Maryland, IREAP, College Pk, MD 20742 USA
[2] Army Res Lab, 2800 Powder Mill Rd, Adelphi, MD 20783 USA
关键词
Network architecture - Quantum entanglement - Qubits - Trapped ions;
D O I
10.1103/PhysRevA.106.042441
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Future quantum networks will require the ability to produce matter-photon entanglement at photon frequencies not naturally emitted from the matter qubit. This allows for a hybrid network architecture, where these photons can couple to other tools and quantum technologies useful for tasks such as multiplexing, routing, and storage, but which operate at wavelengths different from that of the matter qubit source, while also reducing network losses. Here, we demonstrate entanglement between a trapped ion and a 780-nm photon, a wavelength that can interact with neutral-Rb-based quantum networking devices. A single barium ion is used to produce 493-nm photons, entangled with the ion, which are then frequency converted to 780 nm while preserving the entanglement. We generate ion-photon entanglement with fidelities 0.93(2) and 0.84(2) for 493-nm and 780-nm photons respectively with the fidelity drop arising predominantly from a reduction in the signal-noise of our detectors at 780 nm compared with at 493 nm.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Satisfiability Modulo Theories-Based Qubit Mapping for Trapped-Ion Quantum Computing Systems
    Tseng, Wei-Hsiang
    Chang, Yao-Wen
    Jiang, Jie-Hong Roland
    PROCEEDINGS OF THE 2024 INTERNATIONAL SYMPOSIUM ON PHYSICAL DESIGN, ISPD 2024, 2024, : 245 - 253
  • [22] Realizing two-qubit gates through mode engineering on a trapped-ion quantum computer
    Li, Ming
    Nguyen, Nhung H.
    Green, Alaina M.
    Amini, Jason
    Linke, Norbert M.
    Nam, Yunseong
    Physical Review A, 2025, 111 (02)
  • [23] Arbitrary quantum circuits on a fully integrated two-qubit computation register for a trapped-ion quantum processor
    Pulido-Mateo, N.
    Mendpara, H.
    Duwe, M.
    Dubielzig, T.
    Zarantonello, G.
    Krinner, L.
    Ospelkaus, C.
    PHYSICAL REVIEW RESEARCH, 2024, 6 (02):
  • [24] Quantum gate teleportation between separated qubits in a trapped-ion processor
    Wan, Yong
    Kienzler, Daniel
    Erickson, Stephen D.
    Mayer, Karl H.
    Tan, Ting Rei
    Wu, Jenny J.
    Vasconcelos, Hilma M.
    Glancy, Scott
    Knill, Emanuel
    Wineland, David J.
    Wilson, Andrew C.
    Leibfried, Dietrich
    SCIENCE, 2019, 364 (6443) : 875 - +
  • [25] Ion-photon entanglement and quantum frequency conversion with trapped Ba+ ions (vol 56, pg B222, 2017)
    Siverns, J. D.
    Li, X.
    Quraishi, Q.
    APPLIED OPTICS, 2017, 56 (08) : 2141 - 2141
  • [26] Controlling qubit-photon entanglement, entanglement swapping and entropic uncertainty via frequency modulation
    Forozesh, Mohadese
    Mortezapour, Ali
    Nourmandipour, Alireza
    EUROPEAN PHYSICAL JOURNAL PLUS, 2021, 136 (07):
  • [27] Trap-integrated superconducting nanowire single-photon detectors for trapped-ion qubit state readout
    Hampel, Benedikt
    Slichter, Daniel H.
    Leibfried, Dietrich
    Mirin, Richard P.
    Nam, Sae Woo
    Verma, Varun B.
    ADVANCED PHOTON COUNTING TECHNIQUES XVIII, 2024, 13025
  • [28] CONVERSION OF ENTANGLEMENT BETWEEN CONTINUOUS VARIABLE AND QUBIT SYSTEMS VIA INTERACTION
    Chen, Xiao-Yu
    Jiang, Li-Zhen
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2008, 6 (05) : 1011 - 1019
  • [29] A Cryogenic 12 GHz Frequency Doubler With Temperature Compensation for Trapped-Ion Quantum Computer
    Toth, Peter
    Meyer, Alexander
    Halama, Sebastian
    Ishikuro, Hiroki
    Issakov, Vadim
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2023, 70 (10) : 3877 - 3881
  • [30] Quantum entanglement between an optical photon and a solid-state spin qubit
    Togan, E.
    Chu, Y.
    Trifonov, A. S.
    Jiang, L.
    Maze, J.
    Childress, L.
    Dutt, M. V. G.
    Sorensen, A. S.
    Hemmer, P. R.
    Zibrov, A. S.
    Lukin, M. D.
    NATURE, 2010, 466 (7307) : 730 - U4